密码学 中国剩余定理
2020-07-30 16:48 更新
简介
中国剩余定理(Chinese remainder theorem, CRT)一般指孙子定理
孙子定理是中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国余数定理。一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。
《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
(S): ⎧x≡a1(mod m1) ⎪x≡a2(mod m2) ⎪⋮ ⎨⋮ ⎪x≡an(mod mn) ⎩
有解的判定条件,并用构造法给出了在有解情况下解的具体形式。
中国剩余定理说明:假设整数m1,m2,...,mn 其中任两数互质,则对任意的整数:a1,a2,...,an,方程组(S)有解
实现
from functools import reduce
def chinese_remainder(n, a):
sum = 0
prod = reduce(lambda a, b: a*b, n)
for n_i, a_i in zip(n, a):
p = prod // n_i
sum += a_i * mul_inv(p, n_i) * p
return sum % prod
def mul_inv(a, b):
b0 = b
x0, x1 = 0, 1
if b == 1: return 1
while a > 1:
q = a // b
a, b = b, a%b
x0, x1 = x1 - q * x0, x0
if x1 < 0: x1 += b0
return x1
if __name__ == '__main__':
n = [3, 5, 7]
a = [2, 3, 2]
print(chinese_remainder(n, a))
运行结果为23.
以上内容是否对您有帮助:
← 密码学 欧拉函数
更多建议: