TensorFlow如何解析函数

2018-09-28 17:14 更新

#版权所有2017 TensorFlow作者.版权所有.

#根据Apache许可证版本2.0(“许可证”)许可;

#除非符合许可证,否则您不得使用此文件.

#您可以获得许可证的副本

#http://www.apache.org/licenses/LICENSE-2.0

#除非适用法律要求或书面同意软件

根据许可证分发的#分发在“按原样”基础上,

#无明示或暗示的任何种类的保证或条件.

#查看有关权限的特定语言的许可证

许可证下的#限制.

# =============================================== =============================

""解析相关的帮助函数在`input_fn`中使用.""

from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.python.feature_column import feature_column as fc from tensorflow.python.framework import dtypes from tensorflow.python.ops import parsing_ops def classifier_parse_example_spec(feature_columns, label_key, label_dtype=dtypes.int64, label_default=None, weight_column=None): """Generates parsing spec for tf.parse_example to be used with classifiers. If users keep data in tf.Example format, they need to call tf.parse_example with a proper feature spec. There are two main things that this utility helps: * Users need to combine parsing spec of features with labels and weights (if any) since they are all parsed from same tf.Example instance. This utility combines these specs. * It is difficult to map expected label by a classifier such as `DNNClassifier` to corresponding tf.parse_example spec. This utility encodes it by getting related information from users (key, dtype). Example output of parsing spec: ```python # Define features and transformations feature_b = tf.feature_column.numeric_column(...) feature_c_bucketized = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("feature_c"), ...) feature_a_x_feature_c = tf.feature_column.crossed_column( columns=["feature_a", feature_c_bucketized], ...) feature_columns = [feature_b, feature_c_bucketized, feature_a_x_feature_c] parsing_spec = tf.estimator.classifier_parse_example_spec( feature_columns, label_key='my-label', label_dtype=tf.string) # For the above example, classifier_parse_example_spec would return the dict: assert parsing_spec == { "feature_a": parsing_ops.VarLenFeature(tf.string), "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32), "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32) "my-label" : parsing_ops.FixedLenFeature([1], dtype=tf.string) } ``` Example usage with a classifier: ```python feature_columns = # define features via tf.feature_column estimator = DNNClassifier( n_classes=1000, feature_columns=feature_columns, weight_column='example-weight', label_vocabulary=['photos', 'keep', ...], hidden_units=[256, 64, 16]) # This label configuration tells the classifier the following: # * weights are retrieved with key 'example-weight' # * label is string and can be one of the following ['photos', 'keep', ...] # * integer id for label 'photos' is 0, 'keep' is 1, ... # Input builders def input_fn_train(): # Returns a tuple of features and labels. features = tf.contrib.learn.read_keyed_batch_features( file_pattern=train_files, batch_size=batch_size, # creates parsing configuration for tf.parse_example features=tf.estimator.classifier_parse_example_spec( feature_columns, label_key='my-label', label_dtype=tf.string, weight_column='example-weight'), reader=tf.RecordIOReader) labels = features.pop('my-label') return features, labels estimator.train(input_fn=input_fn_train) ``` Args: feature_columns: An iterable containing all feature columns. All items should be instances of classes derived from `_FeatureColumn`. label_key: A string identifying the label. It means tf.Example stores labels with this key. label_dtype: A `tf.dtype` identifies the type of labels. By default it is `tf.int64`. If user defines a `label_vocabulary`, this should be set as `tf.string`. `tf.float32` labels are only supported for binary classification. label_default: used as label if label_key does not exist in given tf.Example. An example usage: let's say `label_key` is 'clicked' and tf.Example contains clicked data only for positive examples in following format `key:clicked, value:1`. This means that if there is no data with key 'clicked' it should count as negative example by setting `label_deafault=0`. Type of this value should be compatible with `label_dtype`. weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the `features`. If it is a `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, then weight_column.normalizer_fn is applied on it to get weight tensor. Returns: A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature` value. Raises: ValueError: If label is used in `feature_columns`. ValueError: If weight_column is used in `feature_columns`. ValueError: If any of the given `feature_columns` is not a `_FeatureColumn` instance. ValueError: If `weight_column` is not a `_NumericColumn` instance. ValueError: if label_key is None. """ parsing_spec = fc.make_parse_example_spec(feature_columns) if label_key in parsing_spec: raise ValueError('label should not be used as feature. ' 'label_key: {}, features: {}'.format( label_key, parsing_spec.keys())) parsing_spec[label_key] = parsing_ops.FixedLenFeature((1,), label_dtype, label_default) if weight_column is None: return parsing_spec if isinstance(weight_column, six.string_types): weight_column = fc.numeric_column(weight_column) if not isinstance(weight_column, fc._NumericColumn): # pylint: disable=protected-access raise ValueError('weight_column should be an instance of ' 'tf.feature_column.numeric_column. ' 'Given type: {} value: {}'.format( type(weight_column), weight_column)) if weight_column.key in parsing_spec: raise ValueError('weight_column should not be used as feature. ' 'weight_column: {}, features: {}'.format( weight_column.key, parsing_spec.keys())) parsing_spec.update(weight_column._parse_example_spec) # pylint: disable=protected-access return parsing_spec def regressor_parse_example_spec(feature_columns, label_key, label_dtype=dtypes.float32, label_default=None, label_dimension=1, weight_column=None): """Generates parsing spec for tf.parse_example to be used with regressors. If users keep data in tf.Example format, they need to call tf.parse_example with a proper feature spec. There are two main things that this utility helps: * Users need to combine parsing spec of features with labels and weights (if any) since they are all parsed from same tf.Example instance. This utility combines these specs. * It is difficult to map expected label by a regressor such as `DNNRegressor` to corresponding tf.parse_example spec. This utility encodes it by getting related information from users (key, dtype). Example output of parsing spec: ```python # Define features and transformations feature_b = tf.feature_column.numeric_column(...) feature_c_bucketized = tf.feature_column.bucketized_column( tf.feature_column.numeric_column("feature_c"), ...) feature_a_x_feature_c = tf.feature_column.crossed_column( columns=["feature_a", feature_c_bucketized], ...) feature_columns = [feature_b, feature_c_bucketized, feature_a_x_feature_c] parsing_spec = tf.estimator.regressor_parse_example_spec( feature_columns, label_key='my-label') # For the above example, regressor_parse_example_spec would return the dict: assert parsing_spec == { "feature_a": parsing_ops.VarLenFeature(tf.string), "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32), "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32) "my-label" : parsing_ops.FixedLenFeature([1], dtype=tf.float32) } ``` Example usage with a regressor: ```python feature_columns = # define features via tf.feature_column estimator = DNNRegressor( hidden_units=[256, 64, 16], feature_columns=feature_columns, weight_column='example-weight', label_dimension=3) # This label configuration tells the regressor the following: # * weights are retrieved with key 'example-weight' # * label is a 3 dimension tensor with float32 dtype. # Input builders def input_fn_train(): # Returns a tuple of features and labels. features = tf.contrib.learn.read_keyed_batch_features( file_pattern=train_files, batch_size=batch_size, # creates parsing configuration for tf.parse_example features=tf.estimator.classifier_parse_example_spec( feature_columns, label_key='my-label', label_dimension=3, weight_column='example-weight'), reader=tf.RecordIOReader) labels = features.pop('my-label') return features, labels estimator.train(input_fn=input_fn_train) ``` Args: feature_columns: An iterable containing all feature columns. All items should be instances of classes derived from `_FeatureColumn`. label_key: A string identifying the label. It means tf.Example stores labels with this key. label_dtype: A `tf.dtype` identifies the type of labels. By default it is `tf.float32`. label_default: used as label if label_key does not exist in given tf.Example. By default default_value is none, which means `tf.parse_example` will error out if there is any missing label. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the `features`. If it is a `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, then weight_column.normalizer_fn is applied on it to get weight tensor. Returns: A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature` value. Raises: ValueError: If label is used in `feature_columns`. ValueError: If weight_column is used in `feature_columns`. ValueError: If any of the given `feature_columns` is not a `_FeatureColumn` instance. ValueError: If `weight_column` is not a `_NumericColumn` instance. ValueError: if label_key is None. """ parsing_spec = fc.make_parse_example_spec(feature_columns) if label_key in parsing_spec: raise ValueError('label should not be used as feature. ' 'label_key: {}, features: {}'.format( label_key, parsing_spec.keys())) parsing_spec[label_key] = parsing_ops.FixedLenFeature( (label_dimension,), label_dtype, label_default) if weight_column is None: return parsing_spec if isinstance(weight_column, six.string_types): weight_column = fc.numeric_column(weight_column) if not isinstance(weight_column, fc._NumericColumn): # pylint: disable=protected-access raise ValueError('weight_column should be an instance of ' 'tf.feature_column.numeric_column. ' 'Given type: {} value: {}'.format( type(weight_column), weight_column)) if weight_column.key in parsing_spec: raise ValueError('weight_column should not be used as feature. ' 'weight_column: {}, features: {}'.format( weight_column.key, parsing_spec.keys())) parsing_spec.update(weight_column._parse_example_spec) # pylint: disable=protected-access return parsing_spec
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号