TensorFlow池化层类及其函数别名
2018-07-06 10:38 更新
#版权所有2015 The TensorFlow作者.版权所有.#根据Apache许可证2.0版(“许可证”)获得许可;
#除非符合许可,否则您不得使用此文件.
#您可以在http://www.apache.org/licenses/LICENSE-2.0获得许可证副本
#除非适用法律要求或书面同意,否则软件根据许可证分发的#按“现状”分发,
#没有任何形式的保证或条件,无论是明示还是暗示.
#请参阅许可证以了解特定语言的管理权限和权限许可证下的限制.
# =============================================================================
# pylint: disable=unused-import,g-bad-import-order
"包含池化层类及其函数别名"
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape
from tensorflow.python.layers import base
from tensorflow.python.layers import utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import nn
from tensorflow.python.util.tf_export import tf_export
class _Pooling1D(base.Layer):
"""Pooling layer for arbitrary pooling functions, for 1D inputs.
This class only exists for code reuse. It will never be an exposed API.
Arguments:
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_function, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(_Pooling1D, self).__init__(name=name, **kwargs)
self.pool_function = pool_function
self.pool_size = utils.normalize_tuple(pool_size, 1, 'pool_size')
self.strides = utils.normalize_tuple(strides, 1, 'strides')
self.padding = utils.normalize_padding(padding)
self.data_format = utils.normalize_data_format(data_format)
self.input_spec = base.InputSpec(ndim=3)
def call(self, inputs):
# There is no TF op for 1D pooling, hence we make the inputs 4D.
if self.data_format == 'channels_last':
# input is NWC, make it NHWC
inputs = array_ops.expand_dims(inputs, 1)
# pool on the W dim
pool_shape = (1, 1) + self.pool_size + (1,)
strides = (1, 1) + self.strides + (1,)
data_format = 'NHWC'
else:
# input is NCW, make it NCHW
inputs = array_ops.expand_dims(inputs, 2)
# pool on the W dim
pool_shape = (1, 1, 1) + self.pool_size
strides = (1, 1, 1) + self.strides
data_format = 'NCHW'
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper(),
data_format=data_format)
if self.data_format == 'channels_last':
return array_ops.squeeze(outputs, 1)
else:
return array_ops.squeeze(outputs, 2)
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
length = utils.conv_output_length(input_shape[1], self.pool_size[0],
self.padding, self.strides[0])
return tensor_shape.TensorShape([input_shape[0], length, input_shape[2]])
@tf_export('layers.AveragePooling1D')
class AveragePooling1D(_Pooling1D):
"""Average Pooling layer for 1D inputs.
Arguments:
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(AveragePooling1D, self).__init__(
nn.avg_pool,
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
name=name,
**kwargs)
@tf_export('layers.average_pooling1d')
def average_pooling1d(inputs, pool_size, strides,
padding='valid', data_format='channels_last',
name=None):
"""Average Pooling layer for 1D inputs.
Arguments:
inputs: The tensor over which to pool. Must have rank 3.
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
Returns:
The output tensor, of rank 3.
Raises:
ValueError: if eager execution is enabled.
"""
layer = AveragePooling1D(pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
name=name)
return layer.apply(inputs)
@tf_export('layers.MaxPooling1D')
class MaxPooling1D(_Pooling1D):
"""Max Pooling layer for 1D inputs.
Arguments:
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(MaxPooling1D, self).__init__(
nn.max_pool,
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
name=name,
**kwargs)
@tf_export('layers.max_pooling1d')
def max_pooling1d(inputs, pool_size, strides,
padding='valid', data_format='channels_last',
name=None):
"""Max Pooling layer for 1D inputs.
Arguments:
inputs: The tensor over which to pool. Must have rank 3.
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
Returns:
The output tensor, of rank 3.
Raises:
ValueError: if eager execution is enabled.
"""
layer = MaxPooling1D(pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
name=name)
return layer.apply(inputs)
class _Pooling2D(base.Layer):
"""Pooling layer for arbitrary pooling functions, for 2D inputs (e.g. images).
This class only exists for code reuse. It will never be an exposed API.
Arguments:
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_function, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(_Pooling2D, self).__init__(name=name, **kwargs)
self.pool_function = pool_function
self.pool_size = utils.normalize_tuple(pool_size, 2, 'pool_size')
self.strides = utils.normalize_tuple(strides, 2, 'strides')
self.padding = utils.normalize_padding(padding)
self.data_format = utils.normalize_data_format(data_format)
self.input_spec = base.InputSpec(ndim=4)
def call(self, inputs):
if self.data_format == 'channels_last':
pool_shape = (1,) + self.pool_size + (1,)
strides = (1,) + self.strides + (1,)
else:
pool_shape = (1, 1) + self.pool_size
strides = (1, 1) + self.strides
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, 4))
return outputs
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_first':
rows = input_shape[2]
cols = input_shape[3]
else:
rows = input_shape[1]
cols = input_shape[2]
rows = utils.conv_output_length(rows, self.pool_size[0], self.padding,
self.strides[0])
cols = utils.conv_output_length(cols, self.pool_size[1], self.padding,
self.strides[1])
if self.data_format == 'channels_first':
return tensor_shape.TensorShape(
[input_shape[0], input_shape[1], rows, cols])
else:
return tensor_shape.TensorShape(
[input_shape[0], rows, cols, input_shape[3]])
@tf_export('layers.AveragePooling2D')
class AveragePooling2D(_Pooling2D):
"""Average pooling layer for 2D inputs (e.g. images).
Arguments:
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(AveragePooling2D, self).__init__(
nn.avg_pool,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, name=name, **kwargs)
@tf_export('layers.average_pooling2d')
def average_pooling2d(inputs,
pool_size, strides,
padding='valid', data_format='channels_last',
name=None):
"""Average pooling layer for 2D inputs (e.g. images).
Arguments:
inputs: The tensor over which to pool. Must have rank 4.
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, height, width)`.
name: A string, the name of the layer.
Returns:
Output tensor.
Raises:
ValueError: if eager execution is enabled.
"""
layer = AveragePooling2D(pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format,
name=name)
return layer.apply(inputs)
@tf_export('layers.MaxPooling2D')
class MaxPooling2D(_Pooling2D):
"""Max pooling layer for 2D inputs (e.g. images).
Arguments:
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(MaxPooling2D, self).__init__(
nn.max_pool,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, name=name, **kwargs)
@tf_export('layers.max_pooling2d')
def max_pooling2d(inputs,
pool_size, strides,
padding='valid', data_format='channels_last',
name=None):
"""Max pooling layer for 2D inputs (e.g. images).
Arguments:
inputs: The tensor over which to pool. Must have rank 4.
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, height, width)`.
name: A string, the name of the layer.
Returns:
Output tensor.
Raises:
ValueError: if eager execution is enabled.
"""
layer = MaxPooling2D(pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format,
name=name)
return layer.apply(inputs)
class _Pooling3D(base.Layer):
"""Pooling layer for arbitrary pooling functions, for 3D inputs.
This class only exists for code reuse. It will never be an exposed API.
Arguments:
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
pool_size: An integer or tuple/list of 3 integers:
(pool_depth, pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, depth, height, width, channels)`
while `channels_first` corresponds to
inputs with shape `(batch, channels, depth, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_function, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(_Pooling3D, self).__init__(name=name, **kwargs)
self.pool_function = pool_function
self.pool_size = utils.normalize_tuple(pool_size, 3, 'pool_size')
self.strides = utils.normalize_tuple(strides, 3, 'strides')
self.padding = utils.normalize_padding(padding)
self.data_format = utils.normalize_data_format(data_format)
self.input_spec = base.InputSpec(ndim=5)
def call(self, inputs):
pool_shape = (1,) + self.pool_size + (1,)
strides = (1,) + self.strides + (1,)
if self.data_format == 'channels_first':
# TF does not support `channels_first` with 3D pooling operations,
# so we must handle this case manually.
# TODO(fchollet): remove this when TF pooling is feature-complete.
inputs = array_ops.transpose(inputs, (0, 2, 3, 4, 1))
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper())
if self.data_format == 'channels_first':
outputs = array_ops.transpose(outputs, (0, 4, 1, 2, 3))
return outputs
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_first':
len_dim1 = input_shape[2]
len_dim2 = input_shape[3]
len_dim3 = input_shape[4]
else:
len_dim1 = input_shape[1]
len_dim2 = input_shape[2]
len_dim3 = input_shape[3]
len_dim1 = utils.conv_output_length(len_dim1, self.pool_size[0],
self.padding, self.strides[0])
len_dim2 = utils.conv_output_length(len_dim2, self.pool_size[1],
self.padding, self.strides[1])
len_dim3 = utils.conv_output_length(len_dim3, self.pool_size[2],
self.padding, self.strides[2])
if self.data_format == 'channels_first':
return tensor_shape.TensorShape(
[input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3])
else:
return tensor_shape.TensorShape(
[input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]])
@tf_export('layers.AveragePooling3D')
class AveragePooling3D(_Pooling3D):
"""Average pooling layer for 3D inputs (e.g. volumes).
Arguments:
pool_size: An integer or tuple/list of 3 integers:
(pool_depth, pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, depth, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, depth, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(AveragePooling3D, self).__init__(
nn.avg_pool3d,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, name=name, **kwargs)
@tf_export('layers.average_pooling3d')
def average_pooling3d(inputs,
pool_size, strides,
padding='valid', data_format='channels_last',
name=None):
"""Average pooling layer for 3D inputs (e.g. volumes).
Arguments:
inputs: The tensor over which to pool. Must have rank 5.
pool_size: An integer or tuple/list of 3 integers:
(pool_depth, pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, depth, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, depth, height, width)`.
name: A string, the name of the layer.
Returns:
Output tensor.
Raises:
ValueError: if eager execution is enabled.
"""
layer = AveragePooling3D(pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format,
name=name)
return layer.apply(inputs)
@tf_export('layers.MaxPooling3D')
class MaxPooling3D(_Pooling3D):
"""Max pooling layer for 3D inputs (e.g. volumes).
Arguments:
pool_size: An integer or tuple/list of 3 integers:
(pool_depth, pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, depth, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, depth, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(MaxPooling3D, self).__init__(
nn.max_pool3d,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, name=name, **kwargs)
@tf_export('layers.max_pooling3d')
def max_pooling3d(inputs,
pool_size, strides,
padding='valid', data_format='channels_last',
name=None):
"""Max pooling layer for 3D inputs (e.g. volumes).
Arguments:
inputs: The tensor over which to pool. Must have rank 5.
pool_size: An integer or tuple/list of 3 integers:
(pool_depth, pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string. The ordering of the dimensions in the inputs.
`channels_last` (default) and `channels_first` are supported.
`channels_last` corresponds to inputs with shape
`(batch, depth, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, depth, height, width)`.
name: A string, the name of the layer.
Returns:
Output tensor.
Raises:
ValueError: if eager execution is enabled.
"""
layer = MaxPooling3D(pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format,
name=name)
return layer.apply(inputs)
# Aliases
AvgPool2D = AveragePooling2D
MaxPool2D = MaxPooling2D
max_pool2d = max_pooling2d
avg_pool2d = average_pooling2d
以上内容是否对您有帮助:
更多建议: