TensorFlow定义变量

2018-09-07 13:53 更新

#版权所有2015 TensorFlow作者.版权所有.

#根据Apache许可证2.0版(“许可证”)许可;

#你不能使用这个文件,除非符合许可证.

#您可以获得许可证的副本

#http      ://www.apache.org/licenses/LICENSE-2.0

#除非适用法律要求或书面同意软件

根据许可证分发的#分发在“按原样”基础上,

#无明示或暗示的任何形式的担保或条件.

#查看有关权限的特定语言的许可证

#许可证下的限制.

# =============================================== =============================

""变量请参阅@ {python / state_ops}指南.""

@@Variable

@@global_variables

@@local_variables

@@model_variables

@@trainable_variables

@@moving_average_variables

@@global_variables_initializer

@@local_variables_initializer

@@variables_initializer

@@is_variable_initialized

@@report_uninitialized_variables

@@assert_variables_initialized

@@assign

@@assign_add

@@assign_sub

@@Saver

@@latest_checkpoint

@@get_checkpoint_state

@@update_checkpoint_state

@@get_variable

@@get_local_variable

@@VariableScope

@@variable_scope

@@variable_op_scope

@@get_variable_scope

@@make_template

@@no_regularizer

@@constant_initializer

@@random_normal_initializer

@@truncated_normal_initializer

@@random_uniform_initializer

@@uniform_unit_scaling_initializer

@@zeros_initializer

@@ones_initializer

@@orthogonal_initializer

@@fixed_size_partitioner

@@variable_axis_size_partitioner

@@min_max_variable_partitioner

@@scatter_update

@@scatter_add

@@scatter_sub

@@scatter_mul

@@scatter_div

@@scatter_nd_update

@@scatter_nd_add

@@scatter_nd_sub

@@sparse_mask

@@IndexedSlices

@@initialize_all_tables

@@tables_initializer

@@export_meta_graph

@@import_meta_graph

@@all_variables

@@initialize_all_variables

@@initialize_local_variables

@@initialize_variables

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

from tensorflow.python.framework import ops

from tensorflow.python.framework import tensor_shape

from tensorflow.python.ops import gen_resource_variable_ops

from tensorflow.python.ops import gen_state_ops

# go/tf-wildcard-import

# pylint: disable=wildcard-import

from tensorflow.python.ops.gen_state_ops import *

# pylint: enable=wildcard-import

# pylint: disable=protected-access,g-doc-return-or-yield,g-doc-args

def variable_op(shape, dtype, name="Variable", set_shape=True, container="",

                shared_name=""):

  """Deprecated. Used variable_op_v2 instead."""

  if not set_shape:

    shape = tensor_shape.unknown_shape()

  ret = gen_state_ops._variable(shape=shape, dtype=dtype, name=name,

                                container=container, shared_name=shared_name)

  # TODO(mrry): Move this to where it is used, so we can get rid of this op

  #   wrapper?

  if set_shape:

    ret.set_shape(shape)

  return ret

def variable_op_v2(shape, dtype, name="Variable", container="", shared_name=""):

  """Create a variable Operation.

  See also variables.Variable.

  Args:

    shape: The shape of the tensor managed by this variable

    dtype: The underlying type of the tensor values.

    name: optional name to use for the variable op.

    container: An optional string. Defaults to "".

      If non-empty, this variable is placed in the given container.

      Otherwise, a default container is used.

    shared_name: An optional string. Defaults to "".

      If non-empty, this variable is named in the given bucket

      with this shared_name. Otherwise, the node name is used instead.

  Returns:

    A variable tensor.1;5A

  """

  return gen_state_ops._variable_v2(shape=shape,

                                    dtype=dtype,

                                    name=name,

                                    container=container,

                                    shared_name=shared_name)

def init_variable(v, init, name="init"):

  """Initializes variable with "init".

  This op does the following:

  if init is a Tensor, v = init

  if callable(init): v = init(VariableShape(v), v.dtype)

  Args:

    v: Variable to initialize

    init: Tensor to assign to v,

      Or an object convertible to Tensor e.g. nparray,

      Or an Initializer that generates a tensor given the shape and type of v.

      An "Initializer" is a callable that returns a tensor that "v" should be

      set to. It will be called as init(shape, dtype).

    name: Optional name for the op.

  Returns:

    The operation that initializes v.

  """

  with ops.name_scope(None, v.op.name + "/", [v, init]):

    with ops.name_scope(name) as scope:

      with ops.colocate_with(v):

        if callable(init):

          assert v.get_shape().is_fully_defined(), "Variable shape unknown."

          # TODO(mrry): Convert to v.shape when the property and

          # accessor are reconciled (and all initializers support

          # tf.TensorShape objects).

          value = init(v.get_shape().as_list(), v.dtype.base_dtype)

          value = ops.convert_to_tensor(value, name="value")

          return gen_state_ops.assign(v, value, name=scope)

        else:

          init = ops.convert_to_tensor(init, name="init")

          return gen_state_ops.assign(v, init, name=scope)

def is_variable_initialized(ref, name=None):

  """Checks whether a tensor has been initialized.

  Outputs boolean scalar indicating whether the tensor has been initialized.

  Args:

    ref: A mutable `Tensor`.

      Should be from a `Variable` node. May be uninitialized.

    name: A name for the operation (optional).

  Returns:

    A `Tensor` of type `bool`.

  """

  if ref.dtype._is_ref_dtype:

    return gen_state_ops.is_variable_initialized(ref=ref, name=name)

  # Handle resource variables.

  if ref.op.type == "VarHandleOp":

    return gen_resource_variable_ops.var_is_initialized_op(ref.handle,

                                                           name=name)

def assign_sub(ref, value, use_locking=None, name=None):

  """Update 'ref' by subtracting 'value' from it.

  This operation outputs "ref" after the update is done.

  This makes it easier to chain operations that need to use the reset value.

  Args:

    ref: A mutable `Tensor`. Must be one of the following types:

      `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`,

      `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.

      Should be from a `Variable` node.

    value: A `Tensor`. Must have the same type as `ref`.

      The value to be subtracted to the variable.

    use_locking: An optional `bool`. Defaults to `False`.

      If True, the subtraction will be protected by a lock;

      otherwise the behavior is undefined, but may exhibit less contention.

    name: A name for the operation (optional).

  Returns:

    Same as "ref".  Returned as a convenience for operations that want

    to use the new value after the variable has been updated.

  """

  if ref.dtype._is_ref_dtype:

    return gen_state_ops.assign_sub(

        ref, value, use_locking=use_locking, name=name)

  return ref.assign_sub(value)

def assign_add(ref, value, use_locking=None, name=None):

  """Update 'ref' by adding 'value' to it.

  This operation outputs "ref" after the update is done.

  This makes it easier to chain operations that need to use the reset value.

  Args:

    ref: A mutable `Tensor`. Must be one of the following types:

      `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`,

      `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.

      Should be from a `Variable` node.

    value: A `Tensor`. Must have the same type as `ref`.

      The value to be added to the variable.

    use_locking: An optional `bool`. Defaults to `False`.

      If True, the addition will be protected by a lock;

      otherwise the behavior is undefined, but may exhibit less contention.

    name: A name for the operation (optional).

  Returns:

    Same as "ref".  Returned as a convenience for operations that want

    to use the new value after the variable has been updated.

  """

  if ref.dtype._is_ref_dtype:

    return gen_state_ops.assign_add(

        ref, value, use_locking=use_locking, name=name)

  return ref.assign_add(value)

def assign(ref, value, validate_shape=None, use_locking=None, name=None):

  """Update 'ref' by assigning 'value' to it.

  This operation outputs a Tensor that holds the new value of 'ref' after

    the value has been assigned. This makes it easier to chain operations

    that need to use the reset value.

  Args:

    ref: A mutable `Tensor`.

      Should be from a `Variable` node. May be uninitialized.

    value: A `Tensor`. Must have the same type as `ref`.

      The value to be assigned to the variable.

    validate_shape: An optional `bool`. Defaults to `True`.

      If true, the operation will validate that the shape

      of 'value' matches the shape of the Tensor being assigned to.  If false,

      'ref' will take on the shape of 'value'.

    use_locking: An optional `bool`. Defaults to `True`.

      If True, the assignment will be protected by a lock;

      otherwise the behavior is undefined, but may exhibit less contention.

    name: A name for the operation (optional).

  Returns:

    A `Tensor` that will hold the new value of 'ref' after

      the assignment has completed.

  """

  if ref.dtype._is_ref_dtype:

    return gen_state_ops.assign(

        ref, value, use_locking=use_locking, name=name,

        validate_shape=validate_shape)

  return ref.assign(value)

以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号