TensorFlow使用dtype库

2018-10-10 17:04 更新

#版权所有2015 TensorFlow作者.版权所有.

#根据Apache许可证版本2.0(“许可证”)许可;

#除非符合许可证,否则您不得使用此文件.

#您可以获得许可证的副本

#http://www.apache.org/licenses/LICENSE-2.0

#除非适用法律要求或书面同意软件

根据许可证分发的#分发在“按原样”基础上,

#无明示或暗示的任何种类的保证或条件.

#查看有关权限的特定语言的许可证

许可证下的#限制.

# ============================================================================

“”“ dtypes库(张量元素类型)“”“

from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.core.framework import types_pb2 class DType(object): """Represents the type of the elements in a `Tensor`. The following `DType` objects are defined: * `tf.float16`: 16-bit half-precision floating-point. * `tf.float32`: 32-bit single-precision floating-point. * `tf.float64`: 64-bit double-precision floating-point. * `tf.bfloat16`: 16-bit truncated floating-point. * `tf.complex64`: 64-bit single-precision complex. * `tf.complex128`: 128-bit double-precision complex. * `tf.int8`: 8-bit signed integer. * `tf.uint8`: 8-bit unsigned integer. * `tf.uint16`: 16-bit unsigned integer. * `tf.int16`: 16-bit signed integer. * `tf.int32`: 32-bit signed integer. * `tf.int64`: 64-bit signed integer. * `tf.bool`: Boolean. * `tf.string`: String. * `tf.qint8`: Quantized 8-bit signed integer. * `tf.quint8`: Quantized 8-bit unsigned integer. * `tf.qint16`: Quantized 16-bit signed integer. * `tf.quint16`: Quantized 16-bit unsigned integer. * `tf.qint32`: Quantized 32-bit signed integer. * `tf.resource`: Handle to a mutable resource. In addition, variants of these types with the `_ref` suffix are defined for reference-typed tensors. The `tf.as_dtype()` function converts numpy types and string type names to a `DType` object. """ def __init__(self, type_enum): """Creates a new `DataType`. NOTE(mrry): In normal circumstances, you should not need to construct a `DataType` object directly. Instead, use the `tf.as_dtype()` function. Args: type_enum: A `types_pb2.DataType` enum value. Raises: TypeError: If `type_enum` is not a value `types_pb2.DataType`. """ # TODO(mrry): Make the necessary changes (using __new__) to ensure # that calling this returns one of the interned values. type_enum = int(type_enum) if (type_enum not in types_pb2.DataType.values() or type_enum == types_pb2.DT_INVALID): raise TypeError( "type_enum is not a valid types_pb2.DataType: %s" % type_enum) self._type_enum = type_enum @property def _is_ref_dtype(self): """Returns `True` if this `DType` represents a reference type.""" return self._type_enum > 100 @property def _as_ref(self): """Returns a reference `DType` based on this `DType`.""" if self._is_ref_dtype: return self else: return _INTERN_TABLE[self._type_enum + 100] @property def base_dtype(self): """Returns a non-reference `DType` based on this `DType`.""" if self._is_ref_dtype: return _INTERN_TABLE[self._type_enum - 100] else: return self @property def real_dtype(self): """Returns the dtype correspond to this dtype's real part.""" base = self.base_dtype if base == complex64: return float32 elif base == complex128: return float64 else: return self @property def is_numpy_compatible(self): return (self._type_enum != types_pb2.DT_RESOURCE and self._type_enum != types_pb2.DT_RESOURCE_REF) @property def as_numpy_dtype(self): """Returns a `numpy.dtype` based on this `DType`.""" return _TF_TO_NP[self._type_enum] @property def as_datatype_enum(self): """Returns a `types_pb2.DataType` enum value based on this `DType`.""" return self._type_enum @property def is_bool(self): """Returns whether this is a boolean data type""" return self.base_dtype == bool @property def is_integer(self): """Returns whether this is a (non-quantized) integer type.""" return (self.is_numpy_compatible and not self.is_quantized and issubclass(self.as_numpy_dtype, np.integer)) @property def is_floating(self): """Returns whether this is a (non-quantized, real) floating point type.""" return self.is_numpy_compatible and issubclass(self.as_numpy_dtype, np.floating) @property def is_complex(self): """Returns whether this is a complex floating point type.""" return self.base_dtype in (complex64, complex128) @property def is_quantized(self): """Returns whether this is a quantized data type.""" return self.base_dtype in [qint8, quint8, qint16, quint16, qint32, bfloat16] @property def is_unsigned(self): """Returns whether this type is unsigned. Non-numeric, unordered, and quantized types are not considered unsigned, and this function returns `False`. Returns: Whether a `DType` is unsigned. """ try: return self.min == 0 except TypeError: return False @property def min(self): """Returns the minimum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find minimum value of %s." % self) # there is no simple way to get the min value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).min except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).min except: raise TypeError("Cannot find minimum value of %s." % self) @property def max(self): """Returns the maximum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find maximum value of %s." % self) # there is no simple way to get the max value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).max except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).max except: raise TypeError("Cannot find maximum value of %s." % self) @property def limits(self, clip_negative=True): """Return intensity limits, i.e. (min, max) tuple, of the dtype. Args: clip_negative : bool, optional If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values. Returns min, max : tuple Lower and upper intensity limits. """ min, max = dtype_range[self.as_numpy_dtype] if clip_negative: min = 0 return min, max def is_compatible_with(self, other): """Returns True if the `other` DType will be converted to this DType. The conversion rules are as follows: ```python DType(T) .is_compatible_with(DType(T)) == True DType(T) .is_compatible_with(DType(T).as_ref) == True DType(T).as_ref.is_compatible_with(DType(T)) == False DType(T).as_ref.is_compatible_with(DType(T).as_ref) == True ``` Args: other: A `DType` (or object that may be converted to a `DType`). Returns: True if a Tensor of the `other` `DType` will be implicitly converted to this `DType`. """ other = as_dtype(other) return self._type_enum in ( other.as_datatype_enum, other.base_dtype.as_datatype_enum) def __eq__(self, other): """Returns True iff this DType refers to the same type as `other`.""" if other is None: return False try: dtype = as_dtype(other).as_datatype_enum return self._type_enum == dtype # pylint: disable=protected-access except TypeError: return False def __ne__(self, other): """Returns True iff self != other.""" return not self.__eq__(other) @property def name(self): """Returns the string name for this `DType`.""" return _TYPE_TO_STRING[self._type_enum] def __int__(self): return self._type_enum def __str__(self): return "<dtype: %r>" % self.name def __repr__(self): return "tf." + self.name def __hash__(self): return self._type_enum @property def size(self): if self._type_enum == types_pb2.DT_RESOURCE: return 1 return np.dtype(self.as_numpy_dtype).itemsize # Define data type range of numpy dtype dtype_range = {np.bool_: (False, True), np.bool8: (False, True), np.uint8: (0, 255), np.uint16: (0, 65535), np.int8: (-128, 127), np.int16: (-32768, 32767), np.int64: (-2**63, 2**63 - 1), np.uint64: (0, 2**64 - 1), np.int32: (-2**31, 2**31 - 1), np.uint32: (0, 2**32 - 1), np.float32: (-1, 1), np.float64: (-1, 1)} # Define standard wrappers for the types_pb2.DataType enum. resource = DType(types_pb2.DT_RESOURCE) float16 = DType(types_pb2.DT_HALF) half = float16 float32 = DType(types_pb2.DT_FLOAT) float64 = DType(types_pb2.DT_DOUBLE) double = float64 int32 = DType(types_pb2.DT_INT32) uint8 = DType(types_pb2.DT_UINT8) uint16 = DType(types_pb2.DT_UINT16) int16 = DType(types_pb2.DT_INT16) int8 = DType(types_pb2.DT_INT8) string = DType(types_pb2.DT_STRING) complex64 = DType(types_pb2.DT_COMPLEX64) complex128 = DType(types_pb2.DT_COMPLEX128) int64 = DType(types_pb2.DT_INT64) bool = DType(types_pb2.DT_BOOL) qint8 = DType(types_pb2.DT_QINT8) quint8 = DType(types_pb2.DT_QUINT8) qint16 = DType(types_pb2.DT_QINT16) quint16 = DType(types_pb2.DT_QUINT16) qint32 = DType(types_pb2.DT_QINT32) resource_ref = DType(types_pb2.DT_RESOURCE_REF) bfloat16 = DType(types_pb2.DT_BFLOAT16) float16_ref = DType(types_pb2.DT_HALF_REF) half_ref = float16_ref float32_ref = DType(types_pb2.DT_FLOAT_REF) float64_ref = DType(types_pb2.DT_DOUBLE_REF) double_ref = float64_ref int32_ref = DType(types_pb2.DT_INT32_REF) uint8_ref = DType(types_pb2.DT_UINT8_REF) uint16_ref = DType(types_pb2.DT_UINT16_REF) int16_ref = DType(types_pb2.DT_INT16_REF) int8_ref = DType(types_pb2.DT_INT8_REF) string_ref = DType(types_pb2.DT_STRING_REF) complex64_ref = DType(types_pb2.DT_COMPLEX64_REF) complex128_ref = DType(types_pb2.DT_COMPLEX128_REF) int64_ref = DType(types_pb2.DT_INT64_REF) bool_ref = DType(types_pb2.DT_BOOL_REF) qint8_ref = DType(types_pb2.DT_QINT8_REF) quint8_ref = DType(types_pb2.DT_QUINT8_REF) qint16_ref = DType(types_pb2.DT_QINT16_REF) quint16_ref = DType(types_pb2.DT_QUINT16_REF) qint32_ref = DType(types_pb2.DT_QINT32_REF) bfloat16_ref = DType(types_pb2.DT_BFLOAT16_REF) # Maintain an intern table so that we don't have to create a large # number of small objects. _INTERN_TABLE = { types_pb2.DT_HALF: float16, types_pb2.DT_FLOAT: float32, types_pb2.DT_DOUBLE: float64, types_pb2.DT_INT32: int32, types_pb2.DT_UINT8: uint8, types_pb2.DT_UINT16: uint16, types_pb2.DT_INT16: int16, types_pb2.DT_INT8: int8, types_pb2.DT_STRING: string, types_pb2.DT_COMPLEX64: complex64, types_pb2.DT_COMPLEX128: complex128, types_pb2.DT_INT64: int64, types_pb2.DT_BOOL: bool, types_pb2.DT_QINT8: qint8, types_pb2.DT_QUINT8: quint8, types_pb2.DT_QINT16: qint16, types_pb2.DT_QUINT16: quint16, types_pb2.DT_QINT32: qint32, types_pb2.DT_BFLOAT16: bfloat16, types_pb2.DT_RESOURCE: resource, types_pb2.DT_HALF_REF: float16_ref, types_pb2.DT_FLOAT_REF: float32_ref, types_pb2.DT_DOUBLE_REF: float64_ref, types_pb2.DT_INT32_REF: int32_ref, types_pb2.DT_UINT8_REF: uint8_ref, types_pb2.DT_UINT16_REF: uint16_ref, types_pb2.DT_INT16_REF: int16_ref, types_pb2.DT_INT8_REF: int8_ref, types_pb2.DT_STRING_REF: string_ref, types_pb2.DT_COMPLEX64_REF: complex64_ref, types_pb2.DT_COMPLEX128_REF: complex128_ref, types_pb2.DT_INT64_REF: int64_ref, types_pb2.DT_BOOL_REF: bool_ref, types_pb2.DT_QINT8_REF: qint8_ref, types_pb2.DT_QUINT8_REF: quint8_ref, types_pb2.DT_QINT16_REF: qint16_ref, types_pb2.DT_QUINT16_REF: quint16_ref, types_pb2.DT_QINT32_REF: qint32_ref, types_pb2.DT_BFLOAT16_REF: bfloat16_ref, types_pb2.DT_RESOURCE_REF: resource_ref, } # Standard mappings between types_pb2.DataType values and string names. _TYPE_TO_STRING = { types_pb2.DT_HALF: "float16", types_pb2.DT_FLOAT: "float32", types_pb2.DT_DOUBLE: "float64", types_pb2.DT_INT32: "int32", types_pb2.DT_UINT8: "uint8", types_pb2.DT_UINT16: "uint16", types_pb2.DT_INT16: "int16", types_pb2.DT_INT8: "int8", types_pb2.DT_STRING: "string", types_pb2.DT_COMPLEX64: "complex64", types_pb2.DT_COMPLEX128: "complex128", types_pb2.DT_INT64: "int64", types_pb2.DT_BOOL: "bool", types_pb2.DT_QINT8: "qint8", types_pb2.DT_QUINT8: "quint8", types_pb2.DT_QINT16: "qint16", types_pb2.DT_QUINT16: "quint16", types_pb2.DT_QINT32: "qint32", types_pb2.DT_BFLOAT16: "bfloat16", types_pb2.DT_RESOURCE: "resource", types_pb2.DT_HALF_REF: "float16_ref", types_pb2.DT_FLOAT_REF: "float32_ref", types_pb2.DT_DOUBLE_REF: "float64_ref", types_pb2.DT_INT32_REF: "int32_ref", types_pb2.DT_UINT8_REF: "uint8_ref", types_pb2.DT_UINT16_REF: "uint16_ref", types_pb2.DT_INT16_REF: "int16_ref", types_pb2.DT_INT8_REF: "int8_ref", types_pb2.DT_STRING_REF: "string_ref", types_pb2.DT_COMPLEX64_REF: "complex64_ref", types_pb2.DT_COMPLEX128_REF: "complex128_ref", types_pb2.DT_INT64_REF: "int64_ref", types_pb2.DT_BOOL_REF: "bool_ref", types_pb2.DT_QINT8_REF: "qint8_ref", types_pb2.DT_QUINT8_REF: "quint8_ref", types_pb2.DT_QINT16_REF: "qint16_ref", types_pb2.DT_QUINT16_REF: "quint16_ref", types_pb2.DT_QINT32_REF: "qint32_ref", types_pb2.DT_BFLOAT16_REF: "bfloat16_ref", types_pb2.DT_RESOURCE_REF: "resource_ref", } _STRING_TO_TF = {value: _INTERN_TABLE[key] for key, value in _TYPE_TO_STRING.items()} # Add non-canonical aliases. _STRING_TO_TF["half"] = float16 _STRING_TO_TF["half_ref"] = float16_ref _STRING_TO_TF["float"] = float32 _STRING_TO_TF["float_ref"] = float32_ref _STRING_TO_TF["double"] = float64 _STRING_TO_TF["double_ref"] = float64_ref # Numpy representation for quantized dtypes. # # These are magic strings that are used in the swig wrapper to identify # quantized types. # TODO(mrry,keveman): Investigate Numpy type registration to replace this # hard-coding of names. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) _np_qint16 = np.dtype([("qint16", np.int16, 1)]) _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) _np_qint32 = np.dtype([("qint32", np.int32, 1)]) # Custom struct dtype for directly-fed ResourceHandles of supported type(s). np_resource = np.dtype([("resource", np.ubyte, 1)]) # Standard mappings between types_pb2.DataType values and numpy.dtypes. _NP_TO_TF = frozenset([ (np.float16, float16), (np.float32, float32), (np.float64, float64), (np.int32, int32), (np.int64, int64), (np.uint8, uint8), (np.uint16, uint16), (np.int16, int16), (np.int8, int8), (np.complex64, complex64), (np.complex128, complex128), (np.object, string), (np.bool, bool), (_np_qint8, qint8), (_np_quint8, quint8), (_np_qint16, qint16), (_np_quint16, quint16), (_np_qint32, qint32), # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16. ]) _TF_TO_NP = { types_pb2.DT_HALF: np.float16, types_pb2.DT_FLOAT: np.float32, types_pb2.DT_DOUBLE: np.float64, types_pb2.DT_INT32: np.int32, types_pb2.DT_UINT8: np.uint8, types_pb2.DT_UINT16: np.uint16, types_pb2.DT_INT16: np.int16, types_pb2.DT_INT8: np.int8, # NOTE(touts): For strings we use np.object as it supports variable length # strings. types_pb2.DT_STRING: np.object, types_pb2.DT_COMPLEX64: np.complex64, types_pb2.DT_COMPLEX128: np.complex128, types_pb2.DT_INT64: np.int64, types_pb2.DT_BOOL: np.bool, types_pb2.DT_QINT8: _np_qint8, types_pb2.DT_QUINT8: _np_quint8, types_pb2.DT_QINT16: _np_qint16, types_pb2.DT_QUINT16: _np_quint16, types_pb2.DT_QINT32: _np_qint32, types_pb2.DT_BFLOAT16: np.uint16, # Ref types types_pb2.DT_HALF_REF: np.float16, types_pb2.DT_FLOAT_REF: np.float32, types_pb2.DT_DOUBLE_REF: np.float64, types_pb2.DT_INT32_REF: np.int32, types_pb2.DT_UINT8_REF: np.uint8, types_pb2.DT_UINT16_REF: np.uint16, types_pb2.DT_INT16_REF: np.int16, types_pb2.DT_INT8_REF: np.int8, types_pb2.DT_STRING_REF: np.object, types_pb2.DT_COMPLEX64_REF: np.complex64, types_pb2.DT_COMPLEX128_REF: np.complex128, types_pb2.DT_INT64_REF: np.int64, types_pb2.DT_BOOL_REF: np.bool, types_pb2.DT_QINT8_REF: _np_qint8, types_pb2.DT_QUINT8_REF: _np_quint8, types_pb2.DT_QINT16_REF: _np_qint16, types_pb2.DT_QUINT16_REF: _np_quint16, types_pb2.DT_QINT32_REF: _np_qint32, types_pb2.DT_BFLOAT16_REF: np.uint16, } QUANTIZED_DTYPES = frozenset( [qint8, quint8, qint16, quint16, qint32, qint8_ref, quint8_ref, qint16_ref, quint16_ref, qint32_ref]) def as_dtype(type_value): """Converts the given `type_value` to a `DType`. Args: type_value: A value that can be converted to a `tf.DType` object. This may currently be a `tf.DType` object, a [`DataType` enum](https://www.tensorflow.org/code/tensorflow/core/framework/types.proto), a string type name, or a `numpy.dtype`. Returns: A `DType` corresponding to `type_value`. Raises: TypeError: If `type_value` cannot be converted to a `DType`. """ if isinstance(type_value, DType): return type_value try: return _INTERN_TABLE[type_value] except KeyError: pass try: return _STRING_TO_TF[type_value] except KeyError: pass if isinstance(type_value, np.dtype): # The numpy dtype for strings is variable length. We can not compare # dtype with a single constant (np.string does not exist) to decide # dtype is a "string" type. We need to compare the dtype.type to be # sure it's a string type. if type_value.type == np.string_ or type_value.type == np.unicode_: return string for key, val in _NP_TO_TF: try: if key == type_value: return val except TypeError as e: raise TypeError("Cannot convert {} to a dtype. {}".format(type_value, e)) raise TypeError( "Cannot convert value %r to a TensorFlow DType." % type_value)
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号