用于导入TensorFlow图的实用函数
2018-10-26 17:12 更新
#版权所有2015 TensorFlow作者.版权所有.
#根据Apache许可证版本2.0(“许可证”)许可;
#除非符合许可证,否则您不得使用此文件.
#您可以获得许可证的副本
#http://www.apache.org/licenses/LICENSE-2.0
#除非适用法律要求或书面同意软件
根据许可证分发的#分发在“按原样”基础上,
#无明示或暗示的任何种类的保证或条件.
#查看有关权限的特定语言的许可证
许可证下的#限制.
# ============================================================================
""用于导入TensorFlow图的实用函数""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import contextlib
import copy
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.python.framework import device as pydev
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function
from tensorflow.python.framework import op_def_registry
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.util import compat
# TODO(josh11b): SWIG the code from node_def_util instead of duplicating
# the logic here.
def _GetNodeAttr(node_def, attr_name):
if attr_name not in node_def.attr:
raise ValueError('Expected one attr with name %r in %s.'
% (attr_name, str(node_def)))
return node_def.attr[attr_name]
def _ArgToTypesNoRef(node_def, arg_def):
if arg_def.number_attr:
repeats = _GetNodeAttr(node_def, arg_def.number_attr).i
if arg_def.type_attr:
dtype = _GetNodeAttr(node_def, arg_def.type_attr).type
else:
assert arg_def.type != types_pb2.DT_INVALID
dtype = arg_def.type
return [dtype] * repeats
elif arg_def.type_attr:
return [_GetNodeAttr(node_def, arg_def.type_attr).type]
elif arg_def.type_list_attr:
return _GetNodeAttr(node_def, arg_def.type_list_attr).list.type
else:
assert arg_def.type != types_pb2.DT_INVALID
return [arg_def.type]
def _SingleArgToTypes(node_def, arg_def):
types = _ArgToTypesNoRef(node_def, arg_def)
if arg_def.is_ref:
return [dtypes.as_dtype(dt)._as_ref.as_datatype_enum for dt in types] # pylint: disable=protected-access
return types
def _ArgsToTypes(node_def, arg_list):
types = []
for arg_def in arg_list:
types.extend(_SingleArgToTypes(node_def, arg_def))
return types
def _InputTypes(node_def, op_dict):
op_def = op_dict[node_def.op]
return _ArgsToTypes(node_def, op_def.input_arg)
def _OutputTypes(node_def, op_dict):
op_def = op_dict[node_def.op]
return _ArgsToTypes(node_def, op_def.output_arg)
def _IsControlInput(input_name):
# Expected format: '^operation_name' (control input).
return input_name.startswith('^')
def _ParseTensorName(tensor_name):
"""Parses a tensor name into an operation name and output index.
This function will canonicalize tensor names as follows:
* "foo:0" -> ("foo", 0)
* "foo:7" -> ("foo", 7)
* "foo" -> ("foo", 0)
* "foo:bar:baz" -> ValueError
Args:
tensor_name: The name of a tensor.
Returns:
A tuple containing the operation name, and the output index.
Raises:
ValueError: If `tensor_name' cannot be interpreted as the name of a tensor.
"""
components = tensor_name.split(':')
if len(components) == 2:
# Expected format: 'operation_name:output_index'.
try:
output_index = int(components[1])
except ValueError:
raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,))
return components[0], output_index
elif len(components) == 1:
# Expected format: 'operation_name' (implicit 0th output).
return components[0], 0
else:
raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,))
def _CanonicalInputName(input_name):
input_name = compat.as_str(input_name)
if _IsControlInput(input_name):
return input_name
input_op_name, output_index = _ParseTensorName(input_name)
return '%s:%d' % (input_op_name, output_index)
def _InvalidNodeMessage(node, message):
return 'graph_def is invalid at node %r: %s.' % (node.name, message)
@contextlib.contextmanager
def _MaybeDevice(device):
"""Applies the given device only if device is not None or empty."""
if device:
with ops.device(device):
yield
else:
yield
def _FindAttrInOpDef(attr_name, op_def):
for attr_def in op_def.attr:
if attr_name == attr_def.name:
return attr_def
return None
def import_graph_def(graph_def, input_map=None, return_elements=None,
name=None, op_dict=None, producer_op_list=None):
"""Imports the graph from `graph_def` into the current default `Graph`.
This function provides a way to import a serialized TensorFlow
[`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer, and extract individual objects in the `GraphDef` as
@{tf.Tensor} and @{tf.Operation} objects. Once extracted,
these objects are placed into the current default `Graph`. See
@{tf.Graph.as_graph_def} for a way to create a `GraphDef`
proto.
Args:
graph_def: A `GraphDef` proto containing operations to be imported into
the default graph.
input_map: A dictionary mapping input names (as strings) in `graph_def`
to `Tensor` objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective `Tensor` values.
return_elements: A list of strings containing operation names in
`graph_def` that will be returned as `Operation` objects; and/or
tensor names in `graph_def` that will be returned as `Tensor` objects.
name: (Optional.) A prefix that will be prepended to the names in
`graph_def`. Note that this does not apply to imported function names.
Defaults to `"import"`.
op_dict: (Optional.) A dictionary mapping op type names to `OpDef` protos.
Must contain an `OpDef` proto for each op type named in `graph_def`.
If omitted, uses the `OpDef` protos registered in the global registry.
producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped)
list of `OpDef`s used by the producer of the graph. If provided, attrs
for ops in `graph_def` that are not in `op_dict` that have their default
value according to `producer_op_list` will be removed. This will allow
some more `GraphDef`s produced by later binaries to be accepted by
earlier binaries.
Returns:
A list of `Operation` and/or `Tensor` objects from the imported graph,
corresponding to the names in `return_elements`.
Raises:
TypeError: If `graph_def` is not a `GraphDef` proto,
`input_map` is not a dictionary mapping strings to `Tensor` objects,
or `return_elements` is not a list of strings.
ValueError: If `input_map`, or `return_elements` contains names that
do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
it refers to an unknown tensor).
"""
# Type checks for inputs.
if not isinstance(graph_def, graph_pb2.GraphDef):
# `graph_def` could be a dynamically-created message, so try a duck-typed
# approach
try:
old_graph_def = graph_def
graph_def = graph_pb2.GraphDef()
graph_def.MergeFrom(old_graph_def)
except TypeError:
raise TypeError('graph_def must be a GraphDef proto.')
if input_map is None:
input_map = {}
else:
if not (isinstance(input_map, dict)
and all(isinstance(k, compat.bytes_or_text_types)
for k in input_map.keys())):
raise TypeError('input_map must be a dictionary mapping strings to '
'Tensor objects.')
if return_elements is not None:
return_elements = tuple(return_elements)
if not all(isinstance(x, compat.bytes_or_text_types)
for x in return_elements):
raise TypeError('return_elements must be a list of strings.')
# Use a canonical representation for all tensor names.
input_map = {_CanonicalInputName(k): v for k, v in input_map.items()}
used_input_keys = set()
name_to_op = {}
if op_dict is None:
op_dict = op_def_registry.get_registered_ops()
if producer_op_list is None:
producer_op_dict = None
else:
producer_op_dict = {op.name: op for op in producer_op_list.op}
g = ops.get_default_graph()
# Add any functions defined in `graph_def` to `g`
if graph_def.library and graph_def.library.function:
# Copy op_dict so we don't clobber the original
op_dict = copy.copy(op_dict)
# pylint: disable=protected-access
# Note that we do not prepend `name` to the function name. The reasoning is
# that function names are similar to op definition names, which currently do
# not have a scoped name or namespace scheme.
functions = function._from_library(graph_def.library)
for f in functions:
f.add_to_graph(g)
op_dict[f.name] = f.definition.signature
# pylint: enable=protected-access
# LINT.IfChange
with ops.name_scope(name, 'import', input_map.values()) as scope:
# TODO(ashankar): Should this just copy over or should it do some
# more nuanced merging? For example, the graph may already have some
# marked "bad versions" and we don't want to lose those because of
# what's in graph_def.versions? The C++ ImporGraphDef does something
# more nuanced.
g.graph_def_versions.CopyFrom(graph_def.versions)
if not all(isinstance(v, ops.Tensor) for v in input_map.values()):
if not scope:
# The caller must have passed `name=''`.
raise ValueError(
'tf.import_graph_def() requires a non-empty `name` if `input_map` '
'contains non-Tensor values. Try calling tf.convert_to_tensor() on '
'`input_map` values before calling tf.import_graph_def().')
with ops.name_scope('_inputs'):
input_map = {k: ops.convert_to_tensor(v) for k, v in input_map.items()}
# NOTE(mrry): We do this in two passes, because there may be a cycle in
# `graph_def`.
# 1. Add operations without their inputs.
for node in graph_def.node:
# Check to see if this op's name matches a previously seen op
if node.name in name_to_op:
raise ValueError('Duplicate name \'%s\' in GraphDef.' % node.name)
# Set any default attr values that aren't present.
if node.op not in op_dict:
raise ValueError('No op named %s in defined operations.' % node.op)
op_def = op_dict[node.op]
for attr_def in op_def.attr:
key = attr_def.name
if attr_def.HasField('default_value'):
value = node.attr[key]
if value is None or value.WhichOneof('value') is None:
node.attr[key].CopyFrom(attr_def.default_value)
if producer_op_dict:
# Remove any default attr values that aren't in op_def.
if node.op in producer_op_dict:
producer_op_def = producer_op_dict[node.op]
# We make a copy of node.attr to iterate through since we
# may modify node.attr inside the loop.
for key in list(node.attr):
if _FindAttrInOpDef(key, op_def) is None:
# No attr_def in consumer, look in producer.
attr_def = _FindAttrInOpDef(key, producer_op_def)
if (attr_def and attr_def.HasField('default_value') and
node.attr[key] == attr_def.default_value):
# Unknown attr had default value in producer, delete it
# so it can be understood by consumer.
del node.attr[key]
output_types = _OutputTypes(node, op_dict)
name_to_op[node.name] = g.create_op(
node.op, [], output_types, name=node.name, attrs=node.attr,
compute_shapes=False, compute_device=False,
op_def=op_def)
# Maps from a node to the ops it is colocated with, if colocation
# is specified in the attributes.
colocation_pairs = collections.defaultdict(list)
# 2. Add inputs to the operations.
for node in graph_def.node:
op = name_to_op[node.name]
input_types = _InputTypes(node, op_dict)
apply_device_function = True
# Rewrite the colocation attributes in the graph, since the
# names of new ops may have changed.
for key, value in op.node_def.attr.items():
if key == '_class':
class_values = value.list
new_class_values = []
for class_value in class_values.s:
if class_value.startswith(b'loc:@'):
op_to_bind_to = class_value[5:].decode()
# Find the op by its original name.
if op_to_bind_to not in name_to_op:
raise ValueError('Specified colocation to an op that '
'does not exist during import: %s in %s' % (
op_to_bind_to, node.name))
original_op = name_to_op[op_to_bind_to]
new_class_values.append(compat.as_bytes(
'loc:@' + original_op.name))
if op_to_bind_to != node.name:
# Keep track of this mapping for a later phase.
colocation_pairs[op].append(original_op)
# Don't apply this op's device function,
# the colocation constraint will ensure
# the proper device gets assigned at runtime.
apply_device_function = False
else:
new_class_values.append(class_value)
value.list.CopyFrom(attr_value_pb2.AttrValue.ListValue(
s=new_class_values))
# NOTE(mrry): We cannot use zip here because control inputs do not appear
# in the list of input_types.
for i, input_name in enumerate(
[_CanonicalInputName(x) for x in node.input]):
if _IsControlInput(input_name):
# (a) Input is a control input that should be taken from an op
# in "graph_def".
try:
source_op = name_to_op[input_name[1:]]
except KeyError:
raise ValueError(
_InvalidNodeMessage(
node,
'Control input %r not found in graph_def.' % (input_name,)))
# pylint: disable=protected-access
op._add_control_input(source_op)
# pylint: enable=protected-access
else:
try:
input_type = input_types[i]
except IndexError:
raise ValueError(_InvalidNodeMessage(
node, 'More inputs specified (%r) than the op expects.'
% (input_name,)))
if input_name in input_map:
# (b) Input should be replaced by a tensor from the caller.
source_tensor = input_map[input_name]
used_input_keys.add(input_name)
else:
# (c) Input should be taken from an op in `graph_def`.
operation_name, output_index = _ParseTensorName(input_name)
try:
source_op = name_to_op[operation_name]
source_tensor = list(source_op.values())[output_index]
except (KeyError, IndexError):
raise ValueError(
_InvalidNodeMessage(
node,
'Input tensor %r not found in graph_def.'
% (input_name,)))
try:
# pylint: disable=protected-access
op._add_input(source_tensor, dtype=input_type)
# pylint: enable=protected-access
except TypeError as te:
raise ValueError(_InvalidNodeMessage(
node, 'Input tensor %r %s' % (input_name, te)))
# pylint: disable=protected-access
if op._input_dtypes != input_types:
raise ValueError(
_InvalidNodeMessage(
node,
'Input types mismatch (expected %r but got %r)'
% (', '.join(dtypes.as_dtype(x).name for x in input_types),
', '.join(x.name for x in op._input_dtypes))))
# pylint: enable=protected-access
if not g._is_function(op.type): # pylint: disable=protected-access
# Execute shape inference for this op.
# NOTE(mrry): If the graph contains a cycle, the full shape information
# may not be available for this op's inputs.
ops.set_shapes_for_outputs(op)
# For nodes with _output_shapes set, set the output shapes.
if '_output_shapes' in op.node_def.attr:
for i, output in enumerate(op.outputs):
dims = op.node_def.attr['_output_shapes'].list.shape[i]
output_shape = tensor_shape.TensorShape(
None if dims.unknown_rank else
[dim.size if dim.size >= 0 else None for dim in dims.dim])
try:
output.set_shape(output_shape)
except ValueError as e:
# If the output shape is incompatible with what is inferred
# by the graph for a very specific whitelist of ops, then we
# ignore this output shape. This can happen if there is a
# bug in the shape function for some operation, and the
# serialized graph def has the incorrect shape set when
# running on a newer binary with the fixed shape function.
# This is an escape hatch that allows us to correct shape
# functions that are not critical to correct execution but
# would cause graphs to fail if imported after correcting.
#
# This can be removed after 2017/03/08.
if op.type in ['RandomShuffleQueue', 'PaddingFIFOQueue',
'FIFOQueue', 'PriorityQueue', 'QueueSize',
'Stack', 'Barrier', 'BarrierReadySize',
'BarrierIncompleteSize', 'HashTable',
'MutableHashTable',
'MutableHashTableOfTensors', 'Mutex',
'CuckooTable', 'IndexTable',
'WholeFileReader', 'TextLineReader',
'FixedLengthRecordReader',
'TFRecordReader', 'IdentityReader',
'LMDBReader',
'RefSwitch', 'RefEnter', 'RefNextIteration',
'RefMerge', 'RefIdentity']:
pass
elif op.type in [
'ConditionalAccumulator', 'SparseConditionalAccumulator',
'Table'
]:
# This can be removed after 2017/04/24.
pass
else:
raise e
del op.node_def.attr['_output_shapes']
# NOTE(mrry): We do this after configuring the inputs, because
# the result of the device functions may depend on the inputs.
if apply_device_function:
with _MaybeDevice(node.device):
g._apply_device_functions(op) # pylint: disable=protected-access
# The following loop populates the device field of ops that are
# colocated with another op. This is implied by the colocation
# attribute, but we propagate the device field for completeness.
for op, coloc_op_list in colocation_pairs.items():
coloc_device = None
# Find any device in the list of colocated ops that have a
# device, if it exists. We assume that if multiple ops
# have devices, they refer to the same device. Otherwise, a
# runtime error will occur since the colocation property
# cannot be guaranteed.
#
# One possible improvement is to try to check for compatibility
# of all devices in this list at import time here, which would
# require implementing a compatibility function for device specs
# in python.
for coloc_op in coloc_op_list:
if coloc_op.device:
coloc_device = pydev.DeviceSpec.from_string(coloc_op.device)
break
if coloc_device:
op._set_device(coloc_device) # pylint: disable=protected-access
# Treat input mappings that don't appear in the graph as an error,
# because they are likely to be due to a typo.
def _IsImportedNodeOutput(tensor_name):
operation_name, output_index = _ParseTensorName(tensor_name)
try:
return output_index < len(name_to_op[operation_name].outputs)
except KeyError:
return False
absent_input_keys = [
k for k in frozenset(input_map.keys()).difference(used_input_keys)
if not _IsImportedNodeOutput(k)]
if absent_input_keys:
raise ValueError(
'Attempted to map inputs that were not found in graph_def: [%s]'
% ', '.join(absent_input_keys))
if return_elements is None:
return None
else:
ret = []
for name in return_elements:
name = compat.as_str(name)
if ':' in name:
try:
operation_name, output_index = _ParseTensorName(name)
ret.append(name_to_op[operation_name].outputs[output_index])
except (ValueError, KeyError, IndexError):
raise ValueError(
'Requested return_element %r not found in graph_def.' % name)
else:
try:
ret.append(name_to_op[name])
except KeyError:
raise ValueError(
'Requested return_element %r not found in graph_def.' % name)
return ret
# LINT.ThenChange(//tensorflow/core/graph/graph_constructor.cc)
以上内容是否对您有帮助:
更多建议: