命名变量存储和管理共享的范围运算符

2018-10-23 18:33 更新

#版权所有2015 TensorFlow作者.版权所有.

#根据Apache许可证版本2.0(“许可证”)许可;

#除非符合许可证,否则您不得使用此文件.

#您可以获得许可证的副本

#http://www.apache.org/licenses/LICENSE-2.0

#除非适用法律要求或书面同意软件

根据许可证分发的#分发在“按原样”基础上,

#无明示或暗示的任何种类的保证或条件.

#查看有关权限的特定语言的许可证

许可证下的限制.

# ============================================================================

""存储命名变量的类和用于管理共享的范围运算符.""

from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as collections_lib import copy import functools import traceback import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import tf_contextlib __all__ = ["VariableScope", "get_variable_scope", "get_variable", "get_local_variable", "variable_scope", "variable_op_scope", "no_regularizer"] class _PartitionInfo(object): """Holds partition info used by initializer functions. """ def __init__(self, full_shape, var_offset): """Constructor. Args: full_shape: Tuple or list of `int` indicating the full combined shape of the partitioned variables. var_offset: Tuple or list of `int` specifying offset of this partition with respect to the full variable for each dimension. Raises: TypeError: If `full_shape` or `var_offset` is not a sequence. ValueError: If `full_shape` or `var_offset` differ in length. If `var_offset` exceeds `full_shape` in any dimension. """ if not isinstance(full_shape, collections_lib.Sequence) or isinstance( full_shape, six.string_types): raise TypeError( "`full_shape` must be a sequence (like tuple or list) instead of " + type(full_shape).__name__) if not isinstance(var_offset, collections_lib.Sequence) or isinstance( var_offset, six.string_types): raise TypeError( "`var_offset` must be a sequence (like tuple or list) instead of " + type(var_offset).__name__) if len(var_offset) != len(full_shape): raise ValueError( "Expected equal length, but `var_offset` is of length {} while " "full_shape is of length {}.".format( len(var_offset), len(full_shape))) for i in xrange(len(full_shape)): offset = var_offset[i] shape = full_shape[i] if offset < 0 or offset >= shape: raise ValueError( "Expected 0 <= offset < shape but found offset={}, shape={} for " "var_offset={}, full_shape={}".format(offset, shape, var_offset, full_shape)) self._full_shape = full_shape self._var_offset = var_offset @property def full_shape(self): return self._full_shape @property def var_offset(self): return self._var_offset def single_offset(self, shape): """Returns the offset when the variable is partitioned in at most one dim. Args: shape: Tuple or list of `int` indicating the shape of one specific variable partition. Returns: `int` representing the offset in the dimension along which the variable is partitioned. Returns 0 if the variable is not being partitioned. Raises: ValueError: Depending on self.single_slice_dim(). """ single_slice_dim = self.single_slice_dim(shape) # If this variable is not being partitioned at all, single_slice_dim() could # return None. if single_slice_dim is None: return 0 return self.var_offset[single_slice_dim] def single_slice_dim(self, shape): """Returns the slice dim when the variable is partitioned only in one dim. Args: shape: Tuple or list of `int` indicating the shape of one specific variable partition. Returns: `int` representing the dimension that the variable is partitioned in, or `None` if the variable doesn't seem to be partitioned at all. Raises: TypeError: If `shape` is not a sequence. ValueError: If `shape` is not the same length as `self.full_shape`. If the variable is partitioned in more than one dimension. """ if not isinstance(shape, collections_lib.Sequence) or isinstance( shape, six.string_types): raise TypeError( "`shape` must be a sequence (like tuple or list) instead of " + type(shape).__name__) if len(shape) != len(self.full_shape): raise ValueError( "Expected equal length, but received shape={} of length {} while " "self.full_shape={} is of length {}.".format(shape, len( shape), self.full_shape, len(self.full_shape))) for i in xrange(len(shape)): if self.var_offset[i] + shape[i] > self.full_shape[i]: raise ValueError( "With self.var_offset={}, a partition of shape={} would exceed " "self.full_shape={} in dimension {}.".format( self.var_offset, shape, self.full_shape, i)) slice_dim = None for i in xrange(len(shape)): if shape[i] == self.full_shape[i]: continue if slice_dim is not None: raise ValueError( "Cannot use single_slice_dim() with shape={} and " "self.full_shape={} since slice dim could be either dimension {} " "or {}.".format(shape, self.full_shape, i, slice_dim)) slice_dim = i return slice_dim class _VariableStore(object): """Variable store that carries a number of named Variables. New variable names and new variables can be created; all stored variables are initialized with the initializer passed to __init__. Attributes: vars: a dictionary with string names (same as passed in GetVar) as keys and the corresponding TensorFlow Variables as values. """ def __init__(self): """Create a variable store.""" self._vars = {} # A dictionary of the stored TensorFlow variables. self._partitioned_vars = {} # A dict of the stored PartitionedVariables. self.variable_scopes_count = {} # Count re-used variable scopes. def open_variable_scope(self, scope_name): if scope_name in self.variable_scopes_count: self.variable_scopes_count[scope_name] += 1 else: self.variable_scopes_count[scope_name] = 1 def close_variable_subscopes(self, scope_name): for k in self.variable_scopes_count: if not scope_name or k.startswith(scope_name + "/"): self.variable_scopes_count[k] = 0 def variable_scope_count(self, scope_name): return self.variable_scopes_count.get(scope_name, 0) def get_variable(self, name, shape=None, dtype=dtypes.float32, initializer=None, regularizer=None, reuse=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None, custom_getter=None): """Gets an existing variable with these parameters or create a new one. If a variable with the given name is already stored, we return the stored variable. Otherwise, we create a new one. Set `reuse` to `True` when you only want to reuse existing Variables. Set `reuse` to `False` when you only want to create new Variables. If `reuse` is `None` (the default), both new and existing variables are returned. If initializer is `None` (the default), the default initializer passed in the constructor is used. If that one is `None` too, we use a new `glorot_uniform_initializer`. If initializer is a Tensor, we use it as a value and derive the shape from the initializer. If a partitioner is provided, a `PartitionedVariable` is returned. Accessing this object as a `Tensor` returns the shards concatenated along the partition axis. Some useful partitioners are available. See, e.g., `variable_axis_size_partitioner` and `min_max_variable_partitioner`. Args: name: The name of the new or existing variable. shape: Shape of the new or existing variable. dtype: Type of the new or existing variable (defaults to `DT_FLOAT`). initializer: Initializer for the variable. regularizer: A (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection GraphKeys.REGULARIZATION_LOSSES and can be used for regularization. reuse: a Boolean or `None`. Controls reuse or creation of variables. trainable: If `True` also add the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). collections: List of graph collections keys to add the `Variable` to. Defaults to `[GraphKeys.GLOBAL_VARIABLES]` (see `tf.Variable`). caching_device: Optional device string or function describing where the Variable should be cached for reading. Defaults to the Variable's device. If not `None`, caches on another device. Typical use is to cache on the device where the Ops using the `Variable` reside, to deduplicate copying through `Switch` and other conditional statements. partitioner: Optional callable that accepts a fully defined `TensorShape` and dtype of the `Variable` to be created, and returns a list of partitions for each axis (currently only one axis can be partitioned). validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known. use_resource: If False, creates a regular Variable. If True, creates instead an experimental ResourceVariable which has well-defined semantics. Defaults to False (will later change to True). custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. The signature of `custom_getter` should match that of this method, but the most future-proof version will allow for changes: `def custom_getter(getter, *args, **kwargs)`. Direct access to all `get_variable` parameters is also allowed: `def custom_getter(getter, name, *args, **kwargs)`. A simple identity custom getter that simply creates variables with modified names is: ```python def custom_getter(getter, name, *args, **kwargs): return getter(name + '_suffix', *args, **kwargs) ``` Returns: The created or existing `Variable` (or `PartitionedVariable`, if a partitioner was used). Raises: ValueError: when creating a new variable and shape is not declared, when reusing a variable and specifying a conflicting shape, or when violating reuse during variable creation. """ if custom_getter is not None and not callable(custom_getter): raise ValueError( "Passed a custom_getter which is not callable: %s" % custom_getter) # If a *_ref type is passed in an error would be triggered further down the # stack. We prevent this using base_dtype to get a non-ref version of the # type, before doing anything else. When _ref types are removed in favor of # resources, this line can be removed. try: dtype = dtype.base_dtype except AttributeError: # .base_dtype not existing means that we will try and use the raw dtype # which was passed in - this might be a NumPy type which is valid. pass # This is the main logic of get_variable. However, custom_getter # may override this logic. So we save it as a callable and pass # it to custom_getter. # Note: the parameters of _true_getter, and their documentation, match # *exactly* item-for-item with the docstring of this method. def _true_getter(name, shape=None, dtype=dtypes.float32, # pylint: disable=missing-docstring initializer=None, regularizer=None, reuse=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None): is_scalar = shape is not None and not shape # Partitioned variable case if partitioner is not None and not is_scalar: if not callable(partitioner): raise ValueError( "Partitioner must be callable, but received: %s" % partitioner) with ops.name_scope(None): return self._get_partitioned_variable(name=name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, reuse=reuse, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=partitioner, validate_shape=validate_shape, use_resource=use_resource) # Special case for partitioned variable to allow reuse without having to # specify partitioner. if (reuse is True and partitioner is None and name in self._partitioned_vars): return self._get_partitioned_variable(name=name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, reuse=reuse, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=None, validate_shape=validate_shape, use_resource=use_resource) # Single variable case if "%s/part_0" % name in self._vars: raise ValueError( "No partitioner was provided, but a partitioned version of the " "variable was found: %s/part_0. Perhaps a variable of the same " "name was already created with partitioning?" % name) return self._get_single_variable( name=name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, reuse=reuse, trainable=trainable, collections=collections, caching_device=caching_device, validate_shape=validate_shape, use_resource=use_resource) if custom_getter is not None: return custom_getter( getter=_true_getter, name=name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, reuse=reuse, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=partitioner, validate_shape=validate_shape, use_resource=use_resource) else: return _true_getter( name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, reuse=reuse, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=partitioner, validate_shape=validate_shape, use_resource=use_resource) def _get_partitioned_variable( self, name, partitioner, shape=None, dtype=dtypes.float32, initializer=None, regularizer=None, reuse=None, trainable=True, collections=None, caching_device=None, validate_shape=True, use_resource=None): """Gets or creates a sharded variable list with these parameters. The `partitioner` must be a callable that accepts a fully defined `TensorShape` and returns a sequence of integers (the `partitions`). These integers describe how to partition the given sharded `Variable` along the given dimension. That is, `partitions[1] = 3` means split the `Variable` into 3 shards along dimension 1. Currently, sharding along only one axis is supported. If the list of variables with the given name (prefix) is already stored, we return the stored variables. Otherwise, we create a new one. Set `reuse` to `True` when you only want to reuse existing Variables. Set `reuse` to `False` when you only want to create new Variables. If `reuse` is `None` (the default), both new and existing variables are returned. If initializer is `None` (the default), the default initializer passed in the constructor is used. If that one is `None` too, we use a new `glorot_uniform_initializer`. If initializer is a Tensor, we use it as a value and derive the shape from the initializer. If the initializer is a callable, then it will be called for each shard. Otherwise the initializer should match the shape of the entire sharded Variable, and it will be sliced accordingly for each shard. Some useful partitioners are available. See, e.g., `variable_axis_size_partitioner` and `min_max_variable_partitioner`. Args: name: the name of the new or existing sharded variable. partitioner: Optional callable that accepts a fully defined `TensorShape` and `dtype` of the Variable to be created, and returns a list of partitions for each axis (currently only one axis can be partitioned). shape: shape of the new or existing sharded variable. dtype: type of the new or existing sharded variable (defaults to `DT_FLOAT`). initializer: initializer for the sharded variable. regularizer: a (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection GraphKeys.REGULARIZATION_LOSSES and can be used for regularization. reuse: a Boolean or `None`. Controls reuse or creation of variables. trainable: If `True` also add the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). collections: List of graph collections keys to add the Variable to. Defaults to `[GraphKeys.GLOBAL_VARIABLES]` (see `tf.Variable`). caching_device: Optional device string or function describing where the Variable should be cached for reading. Defaults to the Variable's device. If not `None`, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through `Switch` and other conditional statements. validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known. use_resource: If False, creates a regular Variable. If True, creates an experimental ResourceVariable which has well-defined semantics. Defaults to False (will later change to True). Returns: A `PartitionedVariable` object. Raises: ValueError: when creating a new variable and shape is not declared, when reusing a variable and specifying a conflicting shape, when violating reuse during variable creation, or if an existing sharded variable exists for the given name but with different sharding. """ initializing_from_value = initializer is not None and isinstance( initializer, ops.Tensor) reuse_without_partition = reuse is True and partitioner is None if name in self._vars: raise ValueError( "A partitioner was provided, but an unpartitioned version of the " "variable was found: %s. Perhaps a variable of the same name was " "already created without partitioning?" % name) shape = tensor_shape.as_shape(shape) if initializing_from_value: shape = shape.merge_with(initializer.get_shape()) if not reuse_without_partition: if not shape.is_fully_defined(): raise ValueError("Shape of a new partitioned variable (%s) must be " "fully defined, but instead was %s." % (name, shape)) if shape.ndims < 1: raise ValueError("A partitioned Variable must have rank at least 1, " "shape: %s" % shape) partitions = partitioner(shape=shape, dtype=dtype) if not isinstance(partitions, collections_lib.Sequence): raise ValueError("Partitioner must return a sequence, but saw: %s" % partitions) if len(partitions) != shape.ndims: raise ValueError( "Partitioner returned a partition list that does not match the " "Variable's rank: %s vs. %s" % (partitions, shape)) if any([p < 1 for p in partitions]): raise ValueError( "Partitioner returned zero partitions for some axes: %s" % partitions) should_check = reuse is not None if name in self._partitioned_vars: if should_check and not reuse: raise ValueError( "Partitioned variable with name %s already exists. Did you mean to " "set reuse=True in VarScope?" % name) existing_var = self._partitioned_vars[name] if not shape.is_compatible_with(existing_var.get_shape()): raise ValueError( "Trying to reuse partitioned variable %s, but specified shape %s " "and found shape %s." % (name, shape, existing_var.get_shape())) if not dtype.is_compatible_with(existing_var.dtype): raise ValueError( "Trying to reuse partitioned variable %s, but specified dtype %s " "and found dtype %s." % (name, dtype.name, existing_var.dtype.name)) # pylint: disable=protected-access if (not reuse_without_partition and existing_var._get_partitions() != partitions): raise ValueError( "Trying to reuse partitioned variable %s, but specified partitions " "%s and found partitions %s." % (name, partitions, existing_var._get_partitions())) # pylint: enable=protected-access return existing_var if should_check and reuse: raise ValueError("PartitionedVariable %s does not exist, or was not " "created with tf.get_variable(). Did you mean to set " "reuse=None in VarScope?" % name) slice_dim, slice_shape = _compute_slice_dim_and_shape( shape.as_list(), partitions) vs = [] num_slices = partitions[slice_dim] num_slices_with_excess = shape[slice_dim].value % num_slices slice_offset = [0] * shape.ndims if "%s/part_0" % name in self._vars: if "%s/part_%d" % (name, num_slices - 1) not in self._vars: raise ValueError( "Partitioner returned a different partitioning than what was " "already found. Partitioner returned %d shards, and shard " "%s/part_0 was found, but %s/part_%d was not." % (num_slices, name, name, num_slices - 1)) if "%s/part_%d" % (name, num_slices) in self._vars: raise ValueError( "Partitioner returned a different partitioning than what was " "already found. Partitioner returned %d shards, and shard " "%s/part_0 was found, but so was the extra shard %s/part_%d." % (num_slices, name, name, num_slices)) for i in xrange(num_slices): var_shape = slice_shape[:] var_offset = slice_offset[:] partition_info = _PartitionInfo( full_shape=shape.as_list(), var_offset=var_offset) if i < num_slices_with_excess: var_shape[slice_dim] += 1 slice_offset[slice_dim] += var_shape[slice_dim] var_full_name = "%s/part_%d" % (name, i) with ops.name_scope(var_full_name + "/PartitionedInitializer"): # Create the tensor to initialize the variable with default value. if initializer is None: init, initializing_from_value = self._get_default_initializer( name=name, shape=shape, dtype=dtype) if initializing_from_value: init_shape = None else: init_shape = var_shape elif callable(initializer): init = initializer init_shape = var_shape elif isinstance(initializer, ops.Tensor): init = array_ops.slice(initializer, var_offset, var_shape) # Use the dtype of the given tensor. dtype = init.dtype.base_dtype init_shape = None else: init = ops.convert_to_tensor(initializer, dtype=dtype) init = array_ops.slice(init, var_offset, var_shape) init_shape = None with ops.name_scope(None): var = self._get_single_variable( name=var_full_name, shape=init_shape, dtype=dtype, initializer=init, partition_info=partition_info, regularizer=regularizer, reuse=reuse, trainable=trainable, collections=collections, caching_device=caching_device, validate_shape=validate_shape, use_resource=use_resource) # pylint: disable=protected-access var._set_save_slice_info(variables.Variable.SaveSliceInfo( name, shape.as_list(), var_offset, var_shape)) vs.append(var) # pylint: enable=protected-access # pylint: disable=protected-access partitioned_var = variables.PartitionedVariable(name=name, shape=shape, dtype=dtype, variable_list=vs, partitions=partitions) # pylint: enable=protected-access self._partitioned_vars[name] = partitioned_var return partitioned_var def _get_single_variable(self, name, shape=None, dtype=dtypes.float32, initializer=None, regularizer=None, partition_info=None, reuse=None, trainable=True, collections=None, caching_device=None, validate_shape=True, use_resource=None,): """Get or create a single Variable (e.g. a shard or entire variable). See the documentation of get_variable above (ignore partitioning components) for details. Args: name: see get_variable. shape: see get_variable. dtype: see get_variable. initializer: see get_variable. regularizer: see get_variable. partition_info: _PartitionInfo object. reuse: see get_variable. trainable: see get_variable. collections: see get_variable. caching_device: see get_variable. validate_shape: see get_variable. use_resource: see get_variable. Returns: A Variable. See documentation of get_variable above. Raises: ValueError: See documentation of get_variable above. """ # Set to true if initializer is a constant. initializing_from_value = False if initializer is not None and not callable(initializer): initializing_from_value = True if shape is not None and initializing_from_value: raise ValueError("If initializer is a constant, do not specify shape.") should_check = reuse is not None dtype = dtypes.as_dtype(dtype) shape = tensor_shape.as_shape(shape) if name in self._vars: # Here we handle the case when returning an existing variable. if should_check and not reuse: tb = self._vars[name].op.traceback[::-1] # Throw away internal tf entries and only take a few lines. tb = [x for x in tb if "tensorflow/python" not in x[0]][:3] raise ValueError("Variable %s already exists, disallowed." " Did you mean to set reuse=True in VarScope? " "Originally defined at:\n\n%s" % ( name, "".join(traceback.format_list(tb)))) found_var = self._vars[name] if not shape.is_compatible_with(found_var.get_shape()): raise ValueError("Trying to share variable %s, but specified shape %s" " and found shape %s." % (name, shape, found_var.get_shape())) if not dtype.is_compatible_with(found_var.dtype): dtype_str = dtype.name found_type_str = found_var.dtype.name raise ValueError("Trying to share variable %s, but specified dtype %s" " and found dtype %s." % (name, dtype_str, found_type_str)) return found_var # The code below handles only the case of creating a new variable. if should_check and reuse: raise ValueError("Variable %s does not exist, or was not created with " "tf.get_variable(). Did you mean to set reuse=None in " "VarScope?" % name) if not shape.is_fully_defined() and not initializing_from_value: raise ValueError("Shape of a new variable (%s) must be fully defined, " "but instead was %s." % (name, shape)) # Create the tensor to initialize the variable with default value. if initializer is None: initializer, initializing_from_value = self._get_default_initializer( name=name, shape=shape, dtype=dtype) # Clear control dependencies while creating the initializer. with ops.control_dependencies(None): if initializing_from_value: init_val = initializer variable_dtype = None else: # Instantiate initializer if provided initializer is a type object. if isinstance(initializer, type(init_ops.Initializer)): initializer = initializer(dtype=dtype) init_val = lambda: initializer( # pylint: disable=g-long-lambda shape.as_list(), dtype=dtype, partition_info=partition_info) variable_dtype = dtype.base_dtype # Create the variable. if use_resource is None: # Set the default value if unspecified. use_resource = False if use_resource: v = resource_variable_ops.ResourceVariable( initial_value=init_val, name=name, trainable=trainable, collections=collections, caching_device=caching_device, dtype=variable_dtype, validate_shape=validate_shape) else: v = variables.Variable( initial_value=init_val, name=name, trainable=trainable, collections=collections, caching_device=caching_device, dtype=variable_dtype, validate_shape=validate_shape) self._vars[name] = v logging.vlog(1, "Created variable %s with shape %s and init %s", v.name, format(shape), initializer) # Run the regularizer if requested and save the resulting loss. if regularizer: with ops.colocate_with(v.op): with ops.name_scope(name + "/Regularizer/"): loss = regularizer(v) if loss is not None: logging.vlog(1, "Applied regularizer to %s and added the result %s " "to REGULARIZATION_LOSSES.", v.name, loss.name) ops.add_to_collection(ops.GraphKeys.REGULARIZATION_LOSSES, loss) return v # Initialize variable when no initializer provided def _get_default_initializer(self, name, shape=None, dtype=dtypes.float32): """Provide a default initializer and a corresponding value. Args: name: see get_variable. shape: see get_variable. dtype: see get_variable. Returns: initializer and initializing_from_value. See get_variable above. Raises: ValueError: When giving unsupported dtype. """ # If dtype is DT_FLOAT, provide a uniform unit scaling initializer if dtype.is_floating: initializer = init_ops.glorot_uniform_initializer() initializing_from_value = False # If dtype is DT_INT/DT_UINT, provide a default value `zero` # If dtype is DT_BOOL, provide a default value `FALSE` elif dtype.is_integer or dtype.is_unsigned or dtype.is_bool: initializer = init_ops.zeros_initializer()( shape=shape, dtype=dtype.base_dtype) initializing_from_value = True # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX here? else: raise ValueError("An initializer for variable %s of %s is required" % (name, dtype.base_dtype)) return initializer, initializing_from_value # To stop regularization, use this regularizer def no_regularizer(_): """Use this function to prevent regularization of variables.""" return None class VariableScope(object): """Variable scope object to carry defaults to provide to `get_variable`. Many of the arguments we need for `get_variable` in a variable store are most easily handled with a context. This object is used for the defaults. Attributes: name: name of the current scope, used as prefix in get_variable. initializer: default initializer passed to get_variable. regularizer: default regularizer passed to get_variable. reuse: Boolean or None, setting the reuse in get_variable. caching_device: string, callable, or None: the caching device passed to get_variable. partitioner: callable or `None`: the partitioner passed to `get_variable`. custom_getter: default custom getter passed to get_variable. name_scope: The name passed to `tf.name_scope`. dtype: default type passed to get_variable (defaults to DT_FLOAT). use_resource: if False, create a normal Variable; if True create an experimental ResourceVariable with well-defined semantics. Defaults to False (will later change to True). """ def __init__(self, reuse, name="", initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, name_scope="", dtype=dtypes.float32, use_resource=None): """Creates a new VariableScope with the given properties.""" self._name = name self._initializer = initializer self._regularizer = regularizer self._reuse = reuse self._caching_device = caching_device self._partitioner = partitioner self._custom_getter = custom_getter self._name_scope = name_scope self._dtype = dtype self._use_resource = use_resource @property def name(self): return self._name @property def original_name_scope(self): return self._name_scope @property def reuse(self): return self._reuse @property def initializer(self): return self._initializer @property def dtype(self): return self._dtype @property def use_resource(self): return self._use_resource @property def regularizer(self): return self._regularizer @property def caching_device(self): return self._caching_device @property def partitioner(self): return self._partitioner @property def custom_getter(self): return self._custom_getter def reuse_variables(self): """Reuse variables in this scope.""" self._reuse = True def set_initializer(self, initializer): """Set initializer for this scope.""" self._initializer = initializer def set_dtype(self, dtype): """Set data type for this scope.""" self._dtype = dtype def set_use_resource(self, use_resource): """Sets whether to use ResourceVariables for this scope.""" self._use_resource = use_resource def set_regularizer(self, regularizer): """Set regularizer for this scope.""" self._regularizer = regularizer def set_caching_device(self, caching_device): """Set caching_device for this scope.""" self._caching_device = caching_device def set_partitioner(self, partitioner): """Set partitioner for this scope.""" self._partitioner = partitioner def set_custom_getter(self, custom_getter): """Set custom getter for this scope.""" self._custom_getter = custom_getter def get_collection(self, name): """Get this scope's variables.""" scope = self._name + "/" if self._name else "" return ops.get_collection(name, scope) def trainable_variables(self): """Get this scope's trainable variables.""" return self.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES) def global_variables(self): """Get this scope's global variables.""" return self.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) def get_variable(self, var_store, name, shape=None, dtype=None, initializer=None, regularizer=None, reuse=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None, custom_getter=None,): """Gets an existing variable with this name or create a new one.""" if regularizer is None: regularizer = self._regularizer if caching_device is None: caching_device = self._caching_device if partitioner is None: partitioner = self._partitioner if custom_getter is None: custom_getter = self._custom_getter if reuse is None: reuse = self._reuse full_name = self.name + "/" + name if self.name else name # Variable names only depend on variable_scope (full_name here), # not name_scope, so we reset it below for the time of variable creation. with ops.name_scope(None): # Check that `initializer` dtype and `dtype` are consistent before # replacing them with defaults. if (dtype is not None and initializer is not None and not callable(initializer)): init_dtype = ops.convert_to_tensor(initializer).dtype.base_dtype if init_dtype != dtype: raise ValueError("Initializer type '%s' and explicit dtype '%s' " "don't match." % (init_dtype, dtype)) if initializer is None: initializer = self._initializer if dtype is None: dtype = self._dtype if use_resource is None: use_resource = self._use_resource return var_store.get_variable( full_name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, reuse=reuse, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=partitioner, validate_shape=validate_shape, use_resource=use_resource, custom_getter=custom_getter) def _get_partitioned_variable(self, var_store, name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None): """Gets an existing variable with this name or create a new one.""" if initializer is None: initializer = self._initializer if regularizer is None: regularizer = self._regularizer if caching_device is None: caching_device = self._caching_device if partitioner is None: partitioner = self._partitioner if dtype is None: dtype = self._dtype if use_resource is None: use_resource = self._use_resource if self._custom_getter is not None: raise ValueError( "Private access to _get_partitioned_variable is not allowed when " "a custom getter is set. Current custom getter: %s. " "It is likely that you're using create_partitioned_variables. " "If so, consider instead using get_variable with a non-empty " "partitioner parameter instead." % self._custom_getter) if partitioner is None: raise ValueError("No partitioner was specified") # This allows the variable scope name to be used as the variable name if # this function is invoked with an empty name arg, for backward # compatibility with create_partitioned_variables(). full_name_list = [] if self.name: full_name_list.append(self.name) if name: full_name_list.append(name) full_name = "/".join(full_name_list) # Variable names only depend on variable_scope (full_name here), # not name_scope, so we reset it below for the time of variable creation. with ops.name_scope(None): # pylint: disable=protected-access return var_store._get_partitioned_variable( full_name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, reuse=self.reuse, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=partitioner, validate_shape=validate_shape, use_resource=use_resource) # pylint: enable=protected-access _VARSTORE_KEY = ("__variable_store",) _VARSCOPE_KEY = ("__varscope",) def get_variable_scope(): """Returns the current variable scope.""" scope = ops.get_collection(_VARSCOPE_KEY) if scope: # This collection has at most 1 element, the default scope at [0]. return scope[0] scope = VariableScope(False) ops.add_to_collection(_VARSCOPE_KEY, scope) return scope def _get_default_variable_store(): store = ops.get_collection(_VARSTORE_KEY) if store: return store[0] store = _VariableStore() ops.add_to_collection(_VARSTORE_KEY, store) return store def get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None, custom_getter=None): return get_variable_scope().get_variable( _get_default_variable_store(), name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=partitioner, validate_shape=validate_shape, use_resource=use_resource, custom_getter=custom_getter) get_variable_or_local_docstring = ( """%s %sThis function prefixes the name with the current variable scope and performs reuse checks. See the @{$variables$Variable Scope How To} for an extensive description of how reusing works. Here is a basic example: ```python with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) # v.name == "foo/v:0" w = tf.get_variable("w", [1]) # w.name == "foo/w:0" with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v") # The same as v above. ``` If initializer is `None` (the default), the default initializer passed in the variable scope will be used. If that one is `None` too, a `glorot_uniform_initializer` will be used. The initializer can also be a Tensor, in which case the variable is initialized to this value and shape. Similarly, if the regularizer is `None` (the default), the default regularizer passed in the variable scope will be used (if that is `None` too, then by default no regularization is performed). If a partitioner is provided, a `PartitionedVariable` is returned. Accessing this object as a `Tensor` returns the shards concatenated along the partition axis. Some useful partitioners are available. See, e.g., `variable_axis_size_partitioner` and `min_max_variable_partitioner`. Args: name: The name of the new or existing variable. shape: Shape of the new or existing variable. dtype: Type of the new or existing variable (defaults to `DT_FLOAT`). initializer: Initializer for the variable if one is created. regularizer: A (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection @{tf.GraphKeys.REGULARIZATION_LOSSES} and can be used for regularization. %scollections: List of graph collections keys to add the Variable to. Defaults to `[%s]` (see `tf.Variable`). caching_device: Optional device string or function describing where the Variable should be cached for reading. Defaults to the Variable's device. If not `None`, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through `Switch` and other conditional statements. partitioner: Optional callable that accepts a fully defined `TensorShape` and `dtype` of the Variable to be created, and returns a list of partitions for each axis (currently only one axis can be partitioned). validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known. use_resource: If False, creates a regular Variable. If true, creates an experimental ResourceVariable instead with well-defined semantics. Defaults to False (will later change to True). custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. The signature of `custom_getter` should match that of this method, but the most future-proof version will allow for changes: `def custom_getter(getter, *args, **kwargs)`. Direct access to all `get_variable` parameters is also allowed: `def custom_getter(getter, name, *args, **kwargs)`. A simple identity custom getter that simply creates variables with modified names is: ```python def custom_getter(getter, name, *args, **kwargs): return getter(name + '_suffix', *args, **kwargs) ``` Returns: The created or existing `Variable` (or `PartitionedVariable`, if a partitioner was used). Raises: ValueError: when creating a new variable and shape is not declared, when violating reuse during variable creation, or when `initializer` dtype and `dtype` don't match. Reuse is set inside `variable_scope`. """) get_variable.__doc__ = get_variable_or_local_docstring % ( "Gets an existing variable with these parameters or create a new one.", "", "trainable: If `True` also add the variable to the graph collection\n" " `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).\n ", "GraphKeys.GLOBAL_VARIABLES") @functools.wraps(get_variable) def get_local_variable(*args, **kwargs): kwargs["trainable"] = False if "collections" in kwargs: kwargs["collections"] += [ops.GraphKeys.LOCAL_VARIABLES] else: kwargs["collections"] = [ops.GraphKeys.LOCAL_VARIABLES] return get_variable(*args, **kwargs) get_local_variable.__doc__ = get_variable_or_local_docstring % ( "Gets an existing *local* variable or creates a new one.", "Behavior is the same as in `get_variable`, except that variables are\n" "added to the `LOCAL_VARIABLES` collection and `trainable` is set to\n" "`False`.\n", "", "GraphKeys.LOCAL_VARIABLES") def _get_partitioned_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None): """Gets or creates a sharded variable list with these parameters. The `partitioner` must be a callable that accepts a fully defined `TensorShape` and returns a sequence of integers (the `partitions`). These integers describe how to partition the given sharded `Variable` along the given dimension. That is, `partitions[1] = 3` means split the `Variable` into 3 shards along dimension 1. Currently, sharding along only one axis is supported. If the list of variables with the given name (prefix) is already stored, we return the stored variables. Otherwise, we create a new one. Set `reuse` to `True` when you only want to reuse existing Variables. Set `reuse` to `False` when you only want to create new Variables. If `reuse` is `None` (the default), both new and existing variables are returned. If initializer is `None` (the default), the default initializer passed in the constructor is used. If that one is `None` too, we use a new `glorot_uniform_initializer`. If initializer is a Tensor, we use it as a value and derive the shape from the initializer. If the initializer is a callable, then it will be called for each shard. Otherwise the initializer should match the shape of the entire sharded Variable, and it will be sliced accordingly for each shard. Some useful partitioners are available. See, e.g., `variable_axis_size_partitioner` and `min_max_variable_partitioner`. Args: name: The name of the new or existing variable. shape: Shape of the new or existing variable. dtype: Type of the new or existing variable (defaults to `DT_FLOAT`). initializer: Initializer for the variable if one is created. regularizer: A (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection GraphKeys.REGULARIZATION_LOSSES and can be used for regularization. trainable: If `True` also add the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). collections: List of graph collections keys to add the Variable to. Defaults to `[GraphKeys.GLOBAL_VARIABLES]` (see `tf.Variable`). caching_device: Optional device string or function describing where the Variable should be cached for reading. Defaults to the Variable's device. If not `None`, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through `Switch` and other conditional statements. partitioner: Optional callable that accepts a fully defined `TensorShape` and `dtype` of the Variable to be created, and returns a list of partitions for each axis (currently only one axis can be partitioned). validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known. use_resource: If False, creates a regular Variable. If True, creates an experimental ResourceVariable instead which has well-defined semantics. Defaults to False (will later change to True). Returns: A tuple `(shards, partitions)` where `shards` is the list of `Variable` shards and `partitions` is the output of the partitioner on the input shape. Raises: ValueError: when creating a new variable and shape is not declared, or when violating reuse during variable creation. Reuse is set inside `variable_scope`. """ # pylint: disable=protected-access scope = get_variable_scope() if scope.custom_getter is not None: raise ValueError( "Private access to _get_partitioned_variable is not allowed when " "a custom getter is set. Current custom getter: %s. " "It is likely that you're using create_partitioned_variables. " "If so, consider instead using get_variable with a non-empty " "partitioner parameter instead." % scope.custom_getter) return scope._get_partitioned_variable( _get_default_variable_store(), name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, trainable=trainable, collections=collections, caching_device=caching_device, partitioner=partitioner, validate_shape=validate_shape, use_resource=use_resource) # pylint: enable=protected-access @tf_contextlib.contextmanager def _pure_variable_scope(name_or_scope, reuse=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, old_name_scope=None, dtype=dtypes.float32, use_resource=None): """Creates a context for the variable_scope, see `variable_scope` for docs. Note: this does not create a name scope. Args: name_or_scope: `string` or `VariableScope`: the scope to open. reuse: `True` or `None`; if `True`, we go into reuse mode for this scope as well as all sub-scopes; if `None`, we just inherit the parent scope reuse. initializer: default initializer for variables within this scope. regularizer: default regularizer for variables within this scope. caching_device: default caching device for variables within this scope. partitioner: default partitioner for variables within this scope. custom_getter: default custom getter for variables within this scope. old_name_scope: the original name scope when re-entering a variable scope. dtype: type of the variables within this scope (defaults to `DT_FLOAT`). use_resource: If False, variables in this scope will be regular Variables. If True, experimental ResourceVariables will be creates instead, with well-defined semantics. Defaults to False (will later change to True). Yields: A scope that can be captured and reused. Raises: ValueError: when trying to reuse within a create scope, or create within a reuse scope, or if reuse is not `None` or `True`. TypeError: when the types of some arguments are not appropriate. """ get_variable_scope() # Ensure that a default exists, then get a pointer. # Get the reference to the collection as we want to modify it in place. default_varscope = ops.get_collection_ref(_VARSCOPE_KEY) old = default_varscope[0] var_store = _get_default_variable_store() if isinstance(name_or_scope, VariableScope): new_name = name_or_scope.name else: new_name = old.name + "/" + name_or_scope if old.name else name_or_scope try: var_store.open_variable_scope(new_name) if isinstance(name_or_scope, VariableScope): old_subscopes = copy.copy(var_store.variable_scopes_count) name_scope = name_or_scope._name_scope # pylint: disable=protected-access # Handler for the case when we jump to a shared scope. # We create a new VariableScope (default_varscope[0]) that contains # a copy of the provided shared scope, possibly with changed reuse # and initializer, if the user requested this. default_varscope[0] = VariableScope( name_or_scope.reuse if reuse is None else reuse, name=new_name, initializer=name_or_scope.initializer, regularizer=name_or_scope.regularizer, caching_device=name_or_scope.caching_device, partitioner=name_or_scope.partitioner, dtype=name_or_scope.dtype, custom_getter=name_or_scope.custom_getter, name_scope=name_scope, use_resource=name_or_scope.use_resource) if initializer is not None: default_varscope[0].set_initializer(initializer) if regularizer is not None: default_varscope[0].set_regularizer(regularizer) if caching_device is not None: default_varscope[0].set_caching_device(caching_device) if partitioner is not None: default_varscope[0].set_partitioner(partitioner) if custom_getter is not None: default_varscope[0].set_custom_getter( _maybe_wrap_custom_getter( custom_getter, name_or_scope.custom_getter)) if dtype is not None: default_varscope[0].set_dtype(dtype) if use_resource is not None: default_varscope[0].set_use_resource(use_resource) yield default_varscope[0] else: # Handler for the case when we just prolong current variable scope. # VariableScope with name extended by the provided one, and inherited # reuse and initializer (except if the user provided values to set). reuse = reuse or old.reuse # Re-using is inherited by sub-scopes. default_varscope[0] = VariableScope( reuse, name=new_name, initializer=old.initializer, regularizer=old.regularizer, caching_device=old.caching_device, partitioner=old.partitioner, dtype=old.dtype, use_resource=old.use_resource, custom_getter=old.custom_getter, name_scope=old_name_scope or name_or_scope) if initializer is not None: default_varscope[0].set_initializer(initializer) if regularizer is not None: default_varscope[0].set_regularizer(regularizer) if caching_device is not None: default_varscope[0].set_caching_device(caching_device) if partitioner is not None: default_varscope[0].set_partitioner(partitioner) if custom_getter is not None: default_varscope[0].set_custom_getter( _maybe_wrap_custom_getter(custom_getter, old.custom_getter)) if dtype is not None: default_varscope[0].set_dtype(dtype) if use_resource is not None: default_varscope[0].set_use_resource(use_resource) yield default_varscope[0] finally: var_store.close_variable_subscopes(new_name) # If jumping out from a non-prolonged scope, restore counts. if isinstance(name_or_scope, VariableScope): var_store.variable_scopes_count = old_subscopes default_varscope[0] = old def _maybe_wrap_custom_getter(custom_getter, old_getter): """Wrap a call to a custom_getter to use the old_getter internally.""" if old_getter is None: return custom_getter # The new custom_getter should call the old one def wrapped_custom_getter(getter, *args, **kwargs): # Call: # custom_getter( # lambda: old_getter(true_getter, ...), *args, **kwargs) # which means custom_getter will call old_getter, which # will call the true_getter, perform any intermediate # processing, and return the results to the current # getter, which will also perform additional processing. return custom_getter( functools.partial(old_getter, getter), *args, **kwargs) return wrapped_custom_getter def _get_unique_variable_scope(prefix): """Get a name with the given prefix unique in the current variable scope.""" var_store = _get_default_variable_store() current_scope = get_variable_scope() name = current_scope.name + "/" + prefix if current_scope.name else prefix if var_store.variable_scope_count(name) == 0: return prefix idx = 1 while var_store.variable_scope_count(name + ("_%d" % idx)) > 0: idx += 1 return prefix + ("_%d" % idx) # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def variable_scope(name_or_scope, default_name=None, values=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None, use_resource=None): """Returns a context manager for defining ops that creates variables (layers). This context manager validates that the (optional) `values` are from the same graph, ensures that graph is the default graph, and pushes a name scope and a variable scope. If `name_or_scope` is not None, it is used as is. If `scope` is None, then `default_name` is used. In that case, if the same name has been previously used in the same scope, it will made unique be appending `_N` to it. Variable scope allows to create new variables and to share already created ones while providing checks to not create or share by accident. For details, see the @{$variables$Variable Scope How To}, here we present only a few basic examples. Simple example of how to create a new variable: ```python with tf.variable_scope("foo"): with tf.variable_scope("bar"): v = tf.get_variable("v", [1]) assert v.name == "foo/bar/v:0" ``` Basic example of sharing a variable: ```python with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1]) assert v1 == v ``` Sharing a variable by capturing a scope and setting reuse: ```python with tf.variable_scope("foo") as scope: v = tf.get_variable("v", [1]) scope.reuse_variables() v1 = tf.get_variable("v", [1]) assert v1 == v ``` To prevent accidental sharing of variables, we raise an exception when getting an existing variable in a non-reusing scope. ```python with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) v1 = tf.get_variable("v", [1]) # Raises ValueError("... v already exists ..."). ``` Similarly, we raise an exception when trying to get a variable that does not exist in reuse mode. ```python with tf.variable_scope("foo", reuse=True): v = tf.get_variable("v", [1]) # Raises ValueError("... v does not exists ..."). ``` Note that the `reuse` flag is inherited: if we open a reusing scope, then all its sub-scopes become reusing as well. A note about name scoping: Setting `reuse` does not impact the naming of other ops such as mult. See related discussion on [github#6189](https://github.com/tensorflow/tensorflow/issues/6189) Note that up to and including version 1.0, it was allowed (though explicitly discouraged) to pass False to the reuse argument, yielding undocumented behaviour slightly different from None. Starting at 1.1.0 passing None and False as reuse has exactly the same effect. Args: name_or_scope: `string` or `VariableScope`: the scope to open. default_name: The default name to use if the `name_or_scope` argument is `None`, this name will be uniquified. If name_or_scope is provided it won't be used and therefore it is not required and can be None. values: The list of `Tensor` arguments that are passed to the op function. initializer: default initializer for variables within this scope. regularizer: default regularizer for variables within this scope. caching_device: default caching device for variables within this scope. partitioner: default partitioner for variables within this scope. custom_getter: default custom getter for variables within this scope. reuse: `True` or `None`; if `True`, we go into reuse mode for this scope as well as all sub-scopes; if `None`, we just inherit the parent scope reuse. dtype: type of variables created in this scope (defaults to the type in the passed scope, or inherited from parent scope). use_resource: If False, all variables will be regular Variables. If True, experimental ResourceVariables with well-defined semantics will be used instead. Defaults to False (will later change to True). Returns: A scope that can be to captured and reused. Raises: ValueError: when trying to reuse within a create scope, or create within a reuse scope. TypeError: when the types of some arguments are not appropriate. """ if default_name is None and name_or_scope is None: raise TypeError("If default_name is None then name_or_scope is required") if not (reuse is True or reuse is False or reuse is None): raise ValueError("The reuse parameter must be True or False or None.") if reuse is False: # We don't allow non-inheriting scopes, False = None here. reuse = None if values is None: values = [] g = ops._get_graph_from_inputs(values) # pylint: disable=protected-access with g.as_default(): if name_or_scope is not None: if not isinstance(name_or_scope, (VariableScope,) + six.string_types): raise TypeError("VariableScope: name_or_scope must be a string or " "VariableScope.") if isinstance(name_or_scope, six.string_types): name_scope = name_or_scope else: name_scope = name_or_scope.name.split("/")[-1] if name_scope: with ops.name_scope(name_scope) as cur_name_scope: if isinstance(name_or_scope, six.string_types): old_name_scope = cur_name_scope else: old_name_scope = name_or_scope.original_name_scope with _pure_variable_scope( name_or_scope, reuse=reuse, initializer=initializer, regularizer=regularizer, caching_device=caching_device, partitioner=partitioner, custom_getter=custom_getter, old_name_scope=old_name_scope, dtype=dtype, use_resource=use_resource) as vs: yield vs else: # This can only happen if someone is entering the root variable scope. with _pure_variable_scope( name_or_scope, reuse=reuse, initializer=initializer, regularizer=regularizer, caching_device=caching_device, partitioner=partitioner, custom_getter=custom_getter, dtype=dtype, use_resource=use_resource) as vs: yield vs else: # Here name_or_scope is None. Using default name, but made unique. if reuse: raise ValueError("reuse=True cannot be used without a name_or_scope") with ops.name_scope(default_name) as scope: unique_default_name = _get_unique_variable_scope(default_name) with _pure_variable_scope( unique_default_name, initializer=initializer, regularizer=regularizer, caching_device=caching_device, partitioner=partitioner, custom_getter=custom_getter, old_name_scope=scope, dtype=dtype, use_resource=use_resource) as vs: yield vs # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def variable_op_scope(values, name_or_scope, default_name=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None, use_resource=None): """Deprecated: context manager for defining an op that creates variables.""" logging.warn("tf.variable_op_scope(values, name, default_name) is deprecated," " use tf.variable_scope(name, default_name, values)") with variable_scope(name_or_scope, default_name=default_name, values=values, initializer=initializer, regularizer=regularizer, caching_device=caching_device, partitioner=partitioner, custom_getter=custom_getter, reuse=reuse, dtype=dtype, use_resource=use_resource) as scope: yield scope def _compute_slice_dim_and_shape(full_shape, slicing): """Computes which dimension is being sliced and the typical slice shape.""" slice_shape = [0] * len(full_shape) slice_dim = None for dim, num_slices in enumerate(slicing): dim_size = full_shape[dim] if num_slices <= 0 or dim_size < num_slices: raise ValueError("Cannot create %d slices for size %d. shape: %s, " "slicing: %s" % (num_slices, full_shape[dim], full_shape, slicing)) if num_slices == 1: # Not slicing in this dimension. slice_shape[dim] = dim_size elif slice_dim is not None: # We only support slicing along one of the dimensions. raise ValueError("Can only slice a variable along one dimension: " "shape: %s, slicing: %s" % (full_shape, slicing)) else: # Note: We will add any extras onto the last slice, later. slice_dim = dim slice_shape[dim] = dim_size // num_slices # Degenerate case: If "slicing" was all ones, pretend we are slicing along # the first dimension. if slice_dim is None: slice_dim = 0 return slice_dim, slice_shape def variable(initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, dtype=None): if get_variable_scope().use_resource: return resource_variable_ops.ResourceVariable( initial_value=initial_value, trainable=trainable, collections=collections, validate_shape=validate_shape, caching_device=caching_device, name=name, dtype=dtype) else: return variables.Variable( initial_value=initial_value, trainable=trainable, collections=collections, validate_shape=validate_shape, caching_device=caching_device, name=name, dtype=dtype)
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号