TensorFlow定义Cudnn RNN操作

2018-09-07 13:52 更新

#版权所有2016 TensorFlow作者.版权所有.

#根据Apache许可证2.0版(“许可证”)许可;

#你不能使用这个文件,除非符合许可证.

#您可以获得许可证的副本

#http      ://www.apache.org/licenses/LICENSE-2.0

#除非适用法律要求或书面同意软件

根据许可证分发的#分发在“按原样”基础上,

#无明示或暗示的任何形式的担保或条件.

#查看有关权限的特定语言的许可证

#许可证下的限制.

# =============================================== =============================

""Cudnn RNN操作""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import itertools

from tensorflow.contrib.cudnn_rnn.ops import gen_cudnn_rnn_ops

from tensorflow.contrib.util import loader

from tensorflow.python.framework import common_shapes

from tensorflow.python.framework import dtypes

from tensorflow.python.framework import ops

from tensorflow.python.framework import random_seed

from tensorflow.python.ops import array_ops

from tensorflow.python.ops import control_flow_ops

from tensorflow.python.ops import state_ops

from tensorflow.python.platform import resource_loader

from tensorflow.python.training import saver

_cudnn_rnn_ops_so = loader.load_op_library(

    resource_loader.get_path_to_datafile("_cudnn_rnn_ops.so"))

# TODO(yaozhang): make sure we only save the canonical version of params and

# don't save the platform-specific version to avoid potential race

# conditions where params is updated by both versions when being restored.

# Currently, checkpointing will function properly, despite that we save both

# versions, because Saver restores customized savables after Variables.

# However, it is good to not rely on this restoring order of Saver and to

# avoid unnecessary storage. Add a test to check only the canonical version is

# saved.

class RNNParamsSaveable(saver.BaseSaverBuilder.SaveableObject):

  """SaveableObject implementation that handles the RNN params variable."""

  def __init__(self,

               params_to_canonical,

               canonical_to_params,

               param_variables,

               name="params_canonical"):

    """Creates a RNNParamsSaveable object.

       RNNParamsSaveable is saveable/restorable in a checkpoint file and is used

       to save/restore the weights and biases parameters in a canonical

       format, where parameters are saved as tensors layer by layer. For each

       layer, the bias tensors are saved following the weight tensors. When

       restoring, a user could name param_variables as desired, and restore

       weight and bias tensors to these variables.

       For CudnnRNNRelu or CudnnRNNTanh, there are 2 tensors per weight and per

       bias for each layer: tensor 0 is applied to the input from the previous

       layer and tensor 1 to the recurrent input.

       For CudnnLSTM, there are 8 tensors per weight and per bias for each

       layer: tensor 0-3 are applied to the input from the previous layer and

       tensor 4-7 to the recurrent input. Tensor 0 and 4 are for the input gate;

       tensor 1 and 5 the forget gate; tensor 2 and 6 the new memory gate;

       tensor 3 and 7 the output gate.

       For CudnnGRU, there are 6 tensors per weight and per bias for each layer:

       tensor 0-2 are applied to the input from the previous layer and

       tensor 3-5 to the recurrent input. Tensor 0 and 3 are for the reset gate;

       tensor 1 and 4 the update gate; tensor 2 and 5 the new memory gate.

    Args:

      params_to_canonical: a function to convert params from a specific format

          for cuDNN or other RNN ops to the canonical format.

          _CudnnRNN.params_to_canonical() should be provided here.

      canonical_to_params: a function to convert params from the canonical

          format to a specific format for cuDNN or other RNN ops. The function

          must return a scalar (e.g. in the case of cuDNN) or a tuple. This

          function could be _CudnnRNN.canonical_to_params() or a

          user-defined function.

      param_variables: a list of Variables for parameters in a specific form.

          For cuDNN RNN ops, this is a single merged variable for both weights

          and biases; for other RNN ops, this might be multiple unmerged or

          partially merged variables respectively for weights and biases.

      name: the name of the RNNParamsSaveable object.

    """

    # There is only a single merged parameter variable for cuDNN when saving.

    weights, biases = params_to_canonical(param_variables[0])

    self._canonical_to_params = canonical_to_params

    self._variables = param_variables

    # We currently don't use slice_spec. It might be useful in a distributed

    # setting where each parameter server node stores a slice of variable,

    # instead of having the master pull all slices and then save them.

    slice_spec = ""

    specs = [

        saver.BaseSaverBuilder.SaveSpec(param, slice_spec, param.name)

        for param in itertools.chain(weights, biases)

    ]

    super(RNNParamsSaveable, self).__init__(None, specs, name)

  def restore(self, restored_tensors, restored_shapes):

    weights = restored_tensors[:len(restored_tensors) // 2]

    biases = restored_tensors[len(restored_tensors) // 2:]

    params = self._canonical_to_params(weights, biases)

    if not isinstance(params, tuple):

      params = (params,)

    assign_ops = [

        state_ops.assign(variable, param, validate_shape=False)

        for variable, param in zip(self._variables, params)

    ]

    return control_flow_ops.group(*assign_ops)

_cudnn_rnn_common_doc_string = """

  Cudnn RNN has an opaque parameter buffer that can be used for inference and

  training. But it is possible that the layout of the parameter buffers

  changes between generations. So it is highly recommended to use

  RNNParamsSaveable to save and restore weights and biases in a canonical

  format.

  This is a typical use case:

    * The user creates a CudnnRNN model.

    * The user query that parameter buffer size.

    * The user creates a variable of that size that serves as the parameter

        buffers.

    * The user either initialize the parameter buffer, or load the canonical

        weights into the parameter buffer.

    * The user calls the model with the parameter buffer for inference, or

        training.

    * If training, the user creates a Saver object.

    * If training, the user creates a RNNParamsSaveable object from the

        parameter buffer for it to be later saved in the canonical format. When

        creating a RNNParamsSaveable object, a name could be provided, which is

        useful in distinguishing the names of multiple RNNParamsSaveable

        objects (e.g. for an encoder-decoder model).

    * Once a while, the user saves the parameter buffer into model checkpoints

        with Saver.save().

    * When restoring, the user creates a RNNParamsSaveable object and uses

      Saver.restore() to restore the paramter buffer from the canonical format

      to a user-defined format, as well as to restore other savable objects

      in the checkpoint file.

"""

class _CudnnRNN(object):

  """Creates an RNN model using the underlying Cudnn implementation.

  Note that self._NUM_PARAMS_PER_LAYER is the number of parameter sets of

  weight and bias per layer. It needs to be defined in subclasses.

  """

  __doc__ += _cudnn_rnn_common_doc_string

  def __init__(self,

               rnn_mode,

               num_layers,

               num_units,

               input_size,

               input_mode="linear_input",

               direction="unidirectional",

               dropout=0.,

               seed=0):

    """Creates a CudnnRNN model from model spec.

    Args:

      rnn_mode: a string specifies the mode, under which this RNN model runs.

          Could be either 'lstm', 'gru', 'rnn_tanh' or 'rnn_relu'.

      num_layers: the number of layers for the RNN model.

      num_units: the number of units within the RNN model.

      input_size: the size of the input, it could be different from the

          num_units.

      input_mode: indicate whether there is a linear projection between the

          input and the actual computation before the first layer. It could be

          'linear_input', 'skip_input' or 'auto_select'.

          'linear_input' (default) always applies a linear projection of input

          onto RNN hidden state. (standard RNN behavior).

          'skip_input' is only allowed when input_size == num_units;

          'auto_select' implies 'skip_input' when input_size == num_units;

          otherwise, it implies 'linear_input'.

      direction: the direction model that the model operates. Could be either

          'unidirectional' or 'bidirectional'

      dropout: whether to enable dropout. With it is 0, dropout is disabled.

      seed: the op seed used for initializing dropout. See @{tf.set_random_seed}

          for behavior.

    """

    self._num_layers = num_layers

    self._num_units = num_units

    self._input_size = input_size

    self._rnn_mode = rnn_mode

    self._input_mode = input_mode

    self._direction = direction

    self._dropout = dropout

    # get graph and op seed.

    self._seed, self._seed2 = random_seed.get_seed(seed)

    if self._seed is None and self._seed2 is None:

      self._seed, self._seed2 = 0, 0

  def params_size(self):

    """Calculates the size of the opaque parameter buffer needed for this model.

    Returns:

      The calculated parameter buffer size.

    """

    return gen_cudnn_rnn_ops.cudnn_rnn_params_size(

        num_layers=self._num_layers,

        num_units=self._num_units,

        input_size=self._input_size,

        T=dtypes.float32,

        S=dtypes.int32,

        dropout=self._dropout,

        seed=self._seed,

        seed2=self._seed2,

        rnn_mode=self._rnn_mode,

        input_mode=self._input_mode,

        direction=self._direction)[0]

  def __call__(self, input_data, input_h, input_c, params, is_training=True):

    """Runs the forward step for the RNN model.

    Args:

      input_data: the input sequence to the RNN model.

      input_h: the initial hidden state for h.

      input_c: the initial hidden state for c. This is only relevant for LSTM.

      params: the parameter buffer created for this model.

      is_training: whether this operation will be used in training or inference.

    Returns:

      output: the output sequuence.

      output_h: the final state for h.

      output_c: the final state for c. This is only relevant for LSTM.

    """

    if self._rnn_mode != "lstm":

      # For model that doesn't take input_c, replace with a dummy tensor.

      input_c = array_ops.constant([], dtype=dtypes.float32)

    output, output_h, output_c, _ = gen_cudnn_rnn_ops.cudnn_rnn(

        input=input_data,

        input_h=input_h,

        input_c=input_c,

        params=params,

        rnn_mode=self._rnn_mode,

        input_mode=self._input_mode,

        direction=self._direction,

        dropout=self._dropout,

        seed=self._seed,

        seed2=self._seed2,

        is_training=is_training)

    return (output, output_h, output_c)

  def params_to_canonical(self, params):

    """Converts params from a specific format of cuDNN to the canonical format.

    Args:

      params: a Variable for weight and bias parameters.

    Returns:

      A function for the specific-to-canonical conversion.

    """

    weights, biases = gen_cudnn_rnn_ops.cudnn_rnn_params_to_canonical(

        num_layers=self._num_layers,

        num_units=self._num_units,

        input_size=self._input_size,

        params=params,

        dropout=self._dropout,

        seed=self._seed,

        seed2=self._seed2,

        num_params=self._num_layers * self._NUM_PARAMS_PER_LAYER,

        rnn_mode=self._rnn_mode,

        input_mode=self._input_mode,

        direction=self._direction)

    return weights, biases

  def canonical_to_params(self, weights, biases):

    """Converts params from the canonical format to a specific format of cuDNN.

    Args:

      weights: a Tensor for weight parameters.

      biases: a Tensor for bias parameters.

    Returns:

      A function for the canonical-to-params-to-specific conversion..

    """

    return gen_cudnn_rnn_ops.cudnn_rnn_canonical_to_params(

        num_layers=self._num_layers,

        num_units=self._num_units,

        input_size=self._input_size,

        weights=weights,

        biases=biases,

        dropout=self._dropout,

        seed=self._seed,

        seed2=self._seed2,

        rnn_mode=self._rnn_mode,

        input_mode=self._input_mode,

        direction=self._direction)

class CudnnLSTM(_CudnnRNN):

  """Cudnn implementation of the LSTM model."""

  __doc__ += _cudnn_rnn_common_doc_string

  # 4 sets of weight and bias parameters for the recurrent input, and 4 for the

  # previous layer input.

  _NUM_PARAMS_PER_LAYER = 8

  def __init__(self,

               num_layers,

               num_units,

               input_size,

               input_mode="auto_select",

               direction="unidirectional",

               dropout=0.,

               seed=0):

    """Creates a Cudnn LSTM model from model spec.

    Args:

      num_layers: the number of layers for the RNN model.

      num_units: the number of units within the RNN model.

      input_size: the size of the input, it could be different from the

          num_units.

      input_mode: indicate whether there is a linear projection between the

          input and The actual computation before the first layer. It could be

          'skip_input', 'linear_input' or 'auto_select'.

          'skip_input' is only allowed when input_size == num_units;

          'auto_select' implies 'skip_input' when input_size == num_units;

          otherwise, it implies 'linear_input'.

      direction: the direction model that the model operates. Could be either

          'unidirectional' or 'bidirectional'

      dropout: whether to enable dropout. With it is 0, dropout is disabled.

      seed: the seed used for initializing dropout.

    """

    super(CudnnLSTM, self).__init__(

        "lstm",

        num_layers,

        num_units,

        input_size,

        input_mode=input_mode,

        direction=direction,

        dropout=dropout,

        seed=seed)

  def __call__(self, input_data, input_h, input_c, params, is_training=True):

    """Runs the forward step for the Cudnn LSTM model.

    Args:

      input_data: the input sequence to the LSTM model.

      input_h: the initial hidden state for h.

      input_c: the initial hidden state for c.

      params: the parameter buffer created for this model.

      is_training: whether this operation will be used in training or inference.

    Returns:

      output: the output sequuence.

      output_h: the final state for h.

      output_c: the final state for c.

    """

    output, output_h, output_c = super(CudnnLSTM, self).__call__(

        input_data, input_h, input_c, params, is_training=is_training)

    return (output, output_h, output_c)

class _CudnnRNNNoInputC(_CudnnRNN):

  """Simple CudnnRNN models without input_c."""

  __doc__ += _cudnn_rnn_common_doc_string

  def __init__(self,

               num_layers,

               num_units,

               input_size,

               input_mode="auto_select",

               direction="unidirectional",

               dropout=0.,

               seed=0):

    """Creates a Cudnn RNN model from model without hidden-state C.

    Args:

      num_layers: the number of layers for the RNN model.

      num_units: the number of units within the RNN model.

      input_size: the size of the input, it could be different from the

          num_units.

      input_mode: indicate whether there is a linear projection between the

          input and The actual computation before the first layer. It could be

          'skip_input', 'linear_input' or 'auto_select'.

          'skip_input' is only allowed when input_size == num_units;

          'auto_select' implies 'skip_input' when input_size == num_units;

          otherwise, it implies 'linear_input'.

      direction: the direction model that the model operates. Could be either

          'unidirectional' or 'bidirectional'

      dropout: whether to enable dropout. With it is 0, dropout is disabled.

      seed: the seed used for initializing dropout.

    """

    super(_CudnnRNNNoInputC, self).__init__(

        self._rnn_mode,

        num_layers,

        num_units,

        input_size,

        input_mode=input_mode,

        direction=direction,

        dropout=dropout,

        seed=seed)

  def __call__(self, input_data, input_h, params, is_training=True):

    """Runs the forward step for the Cudnn LSTM model.

    Args:

      input_data: the input sequence to the LSTM model.

      input_h: the initial hidden state for h.

      params: the parameter buffer created for this model.

      is_training: whether this operation will be used in training or inference.

    Returns:

      output: the output sequuence.

      output_h: the final state for h.

    """

    output, output_h, _ = super(_CudnnRNNNoInputC, self).__call__(

        input_data, input_h, None, params, is_training=is_training)

    return (output, output_h)

class CudnnGRU(_CudnnRNNNoInputC):

  """Cudnn implementation of the GRU model."""

  __doc__ += _cudnn_rnn_common_doc_string

  _rnn_mode = "gru"

  # 3 sets of weight and bias parameters for the recurrent input, and 3 for the

  # previous layer input.

  _NUM_PARAMS_PER_LAYER = 6

class CudnnRNNTanh(_CudnnRNNNoInputC):

  """Cudnn implementation of the RNN-tanh model."""

  __doc__ += _cudnn_rnn_common_doc_string

  _rnn_mode = "rnn_tanh"

  # 1 set of weight and bias parameters for the recurrent input, and 1 for the

  # previous layer input.

  _NUM_PARAMS_PER_LAYER = 2

class CudnnRNNRelu(_CudnnRNNNoInputC):

  """Cudnn implementation of the RNN-relu model."""

  __doc__ += _cudnn_rnn_common_doc_string

  _rnn_mode = "rnn_relu"

  # 1 set of weight and bias parameters for the recurrent input, and 1 for the

  # previous layer input.

  _NUM_PARAMS_PER_LAYER = 2

@ops.RegisterGradient("CudnnRNN")

def _cudnn_rnn_backward(op, *grad):

  if not op.get_attr("is_training"):

    raise ValueError(

        "CudnnRNN must set is_training to True to be used in gradients")

  return gen_cudnn_rnn_ops.cudnn_rnn_backprop(

      input=op.inputs[0],

      input_h=op.inputs[1],

      input_c=op.inputs[2],

      params=op.inputs[3],

      output=op.outputs[0],

      output_h=op.outputs[1],

      output_c=op.outputs[2],

      output_backprop=grad[0],

      output_h_backprop=grad[1],

      output_c_backprop=grad[2],

      reserve_space=op.outputs[3],

      dropout=op.get_attr("dropout"),

      seed=op.get_attr("seed"),

      seed2=op.get_attr("seed2"),

      rnn_mode=op.get_attr("rnn_mode"),

      input_mode=op.get_attr("input_mode"),

      direction=op.get_attr("direction"))

ops.RegisterShape("CudnnRNNParamsSize")(common_shapes.call_cpp_shape_fn)

ops.RegisterShape("CudnnRNNParamsToCanonical")(common_shapes.call_cpp_shape_fn)

ops.RegisterShape("CudnnRNNCanonicalToParams")(common_shapes.call_cpp_shape_fn)

ops.RegisterShape("CudnnRNN")(common_shapes.call_cpp_shape_fn)

ops.RegisterShape("CudnnRNNBackprop")(common_shapes.call_cpp_shape_fn)

以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号