TensorFlow中与model_fn相关的类和方法
2018-04-28 11:10 更新
#版权所有2016年TensorFlow作者.版权所有.
#根据Apache许可证2.0版(“许可证”)获得许可;
#除了符合许可证外,您不得使用此文件.
#您可以在获得许可证副本
#http://www.apache.org/licenses/LICENSE-2.0
#除非适用法律要求或以书面形式同意软件根据许可证分发的#按“现状”分发,
#没有任何形式的保证或条件,无论是明示还是暗示.
#请参阅许可证以了解特定语言的管理权限和权限
#许可证下的限制.
#==============================================================================
“与model_fn相关的类和方法.”
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import six
from tensorflow.python.estimator.export.export_output import ExportOutput
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.training import monitored_session
from tensorflow.python.training import session_run_hook
from tensorflow.python.util import nest
class ModeKeys(object):
"""Standard names for model modes.
The following standard keys are defined:
* `TRAIN`: training mode.
* `EVAL`: evaluation mode.
* `PREDICT`: inference mode.
"""
TRAIN = 'train'
EVAL = 'eval'
PREDICT = 'infer'
LOSS_METRIC_KEY = 'loss'
AVERAGE_LOSS_METRIC_KEY = 'average_loss'
class EstimatorSpec(
collections.namedtuple('EstimatorSpec', [
'mode', 'predictions', 'loss', 'train_op', 'eval_metric_ops',
'export_outputs', 'training_chief_hooks', 'training_hooks', 'scaffold',
'evaluation_hooks', 'prediction_hooks'
])):
"""Ops and objects returned from a `model_fn` and passed to an `Estimator`.
`EstimatorSpec` fully defines the model to be run by an `Estimator`.
"""
def __new__(cls,
mode,
predictions=None,
loss=None,
train_op=None,
eval_metric_ops=None,
export_outputs=None,
training_chief_hooks=None,
training_hooks=None,
scaffold=None,
evaluation_hooks=None,
prediction_hooks=None):
"""Creates a validated `EstimatorSpec` instance.
Depending on the value of `mode`, different arguments are required. Namely
* For `mode == ModeKeys.TRAIN`: required fields are `loss` and `train_op`.
* For `mode == ModeKeys.EVAL`: required field is `loss`.
* For `mode == ModeKeys.PREDICT`: required fields are `predictions`.
model_fn can populate all arguments independent of mode. In this case, some
arguments will be ignored by an `Estimator`. E.g. `train_op` will be
ignored in eval and infer modes. Example:
```python
def my_model_fn(mode, features, labels):
predictions = ...
loss = ...
train_op = ...
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
```
Alternatively, model_fn can just populate the arguments appropriate to the
given mode. Example:
```python
def my_model_fn(mode, features, labels):
if (mode == tf.estimator.ModeKeys.TRAIN or
mode == tf.estimator.ModeKeys.EVAL):
loss = ...
else:
loss = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = ...
else:
train_op = None
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = ...
else:
predictions = None
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
```
Args:
mode: A `ModeKeys`. Specifies if this is training, evaluation or
prediction.
predictions: Predictions `Tensor` or dict of `Tensor`.
loss: Training loss `Tensor`. Must be either scalar, or with shape `[1]`.
train_op: Op for the training step.
eval_metric_ops: Dict of metric results keyed by name. The values of the
dict are the results of calling a metric function, namely a
`(metric_tensor, update_op)` tuple. `metric_tensor` should be evaluated
without any impact on state (typically is a pure computation results
based on variables.). For example, it should not trigger the `update_op`
or requires any input fetching.
export_outputs: Describes the output signatures to be exported to
`SavedModel` and used during serving.
A dict `{name: output}` where:
* name: An arbitrary name for this output.
* output: an `ExportOutput` object such as `ClassificationOutput`,
`RegressionOutput`, or `PredictOutput`.
Single-headed models only need to specify one entry in this dictionary.
Multi-headed models should specify one entry for each head, one of
which must be named using
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.
training_chief_hooks: Iterable of `tf.train.SessionRunHook` objects to
run on the chief worker during training.
training_hooks: Iterable of `tf.train.SessionRunHook` objects to run
on all workers during training.
scaffold: A `tf.train.Scaffold` object that can be used to set
initialization, saver, and more to be used in training.
evaluation_hooks: Iterable of `tf.train.SessionRunHook` objects to
run during evaluation.
prediction_hooks: Iterable of `tf.train.SessionRunHook` objects to
run during predictions.
Returns:
A validated `EstimatorSpec` object.
Raises:
ValueError: If validation fails.
TypeError: If any of the arguments is not the expected type.
"""
# Validate train_op.
if train_op is None:
if mode == ModeKeys.TRAIN:
raise ValueError('Missing train_op.')
else:
_check_is_tensor_or_operation(train_op, 'train_op')
# Validate loss.
if loss is None:
if mode in (ModeKeys.TRAIN, ModeKeys.EVAL):
raise ValueError('Missing loss.')
else:
loss = _check_is_tensor(loss, 'loss')
loss_shape = loss.get_shape()
if loss_shape.num_elements() not in (None, 1):
raise ValueError('Loss must be scalar, given: {}'.format(loss))
if not loss_shape.is_compatible_with(tensor_shape.scalar()):
loss = array_ops.reshape(loss, [])
# Validate predictions.
if predictions is None:
if mode == ModeKeys.PREDICT:
raise ValueError('Missing predictions.')
predictions = {}
else:
if isinstance(predictions, dict):
predictions = {
k: _check_is_tensor(v, 'predictions[{}]'.format(k))
for k, v in six.iteritems(predictions)
}
else:
predictions = _check_is_tensor(predictions, 'predictions')
# Validate eval_metric_ops.
if eval_metric_ops is None:
eval_metric_ops = {}
else:
if not isinstance(eval_metric_ops, dict):
raise TypeError(
'eval_metric_ops must be a dict, given: {}'.format(eval_metric_ops))
for key, metric_value_and_update in six.iteritems(eval_metric_ops):
if (not isinstance(metric_value_and_update, tuple) or
len(metric_value_and_update) != 2):
raise TypeError(
'Values of eval_metric_ops must be (metric_value, update_op) '
'tuples, given: {} for key: {}'.format(
metric_value_and_update, key))
metric_value, metric_update = metric_value_and_update
for metric_value_member in nest.flatten(metric_value):
# Allow (possibly nested) tuples for metric values, but require that
# each of them be Tensors or Operations.
_check_is_tensor_or_operation(metric_value_member,
'eval_metric_ops[{}]'.format(key))
_check_is_tensor_or_operation(metric_update,
'eval_metric_ops[{}]'.format(key))
# Validate export_outputs.
if export_outputs is not None:
if not isinstance(export_outputs, dict):
raise TypeError('export_outputs must be dict, given: {}'.format(
export_outputs))
for v in six.itervalues(export_outputs):
if not isinstance(v, ExportOutput):
raise TypeError(
'Values in export_outputs must be ExportOutput objects. '
'Given: {}'.format(export_outputs))
# Note export_outputs is allowed to be empty.
if len(export_outputs) == 1:
(key, value), = export_outputs.items()
if key != signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
export_outputs[
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = value
if len(export_outputs) > 1:
if (signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
not in export_outputs):
raise ValueError(
'Multiple export_outputs were provided, but none of them is '
'specified as the default. Do this by naming one of them with '
'signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.')
# Validate that all tensors and ops are from the default graph.
default_graph = ops.get_default_graph()
# We enumerate possible error causes here to aid in debugging.
error_message_template = (
'{0} with "{1}" must be from the default graph. '
'Possible causes of this error include: \n\n'
'1) {0} was created outside the context of the default graph.'
'\n\n'
'2) The object passed through to EstimatorSpec was not created '
'in the most recent call to "model_fn".')
if isinstance(predictions, dict):
for key, value in six.iteritems(predictions):
if value.graph is not default_graph:
raise ValueError(error_message_template.format(
'prediction values',
'{0}: {1}'.format(key, value.name)))
elif predictions is not None:
# 'predictions' must be a single Tensor.
if predictions.graph is not default_graph:
raise ValueError(error_message_template.format(
'prediction values', predictions.name))
if loss is not None and loss.graph is not default_graph:
raise ValueError(error_message_template.format('loss', loss.name))
if train_op is not None and train_op.graph is not default_graph:
raise ValueError(error_message_template.format('train_op', train_op.name))
for key, value in list(six.iteritems(eval_metric_ops)):
values = nest.flatten(value)
for value in values:
if value.graph is not default_graph:
raise ValueError(error_message_template.format(
'eval_metric_ops',
'{0}: {1}'.format(key, value.name)))
# Validate hooks.
training_chief_hooks = tuple(training_chief_hooks or [])
training_hooks = tuple(training_hooks or [])
evaluation_hooks = tuple(evaluation_hooks or [])
prediction_hooks = tuple(prediction_hooks or [])
for hook in (training_hooks + training_chief_hooks + evaluation_hooks +
prediction_hooks):
if not isinstance(hook, session_run_hook.SessionRunHook):
raise TypeError(
'All hooks must be SessionRunHook instances, given: {}'.format(
hook))
scaffold = scaffold or monitored_session.Scaffold()
# Validate scaffold.
if not isinstance(scaffold, monitored_session.Scaffold):
raise TypeError(
'scaffold must be tf.train.Scaffold. Given: {}'.format(scaffold))
return super(EstimatorSpec, cls).__new__(
cls,
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops,
export_outputs=export_outputs,
training_chief_hooks=training_chief_hooks,
training_hooks=training_hooks,
scaffold=scaffold,
evaluation_hooks=evaluation_hooks,
prediction_hooks=prediction_hooks)
def _replace(self, **kwds):
"""Return a new EstimatorSpec replacing specified fields with new values."""
if 'mode' in kwds:
if self.mode != kwds['mode']:
raise ValueError('mode of EstimatorSpec cannot be changed.')
new_fields = map(kwds.pop, self._fields, list(self))
return EstimatorSpec(*new_fields)
def _check_is_tensor_or_operation(x, name):
if not (isinstance(x, ops.Operation) or isinstance(x, ops.Tensor)):
raise TypeError('{} must be Operation or Tensor, given: {}'.format(name, x))
def _check_is_tensor(x, tensor_name):
"""Returns `x` if it is a `Tensor`, raises TypeError otherwise."""
if not isinstance(x, ops.Tensor):
raise TypeError('{} must be Tensor, given: {}'.format(tensor_name, x))
return x
以上内容是否对您有帮助:
更多建议: