C++二叉搜索树

2023-09-20 09:18 更新

图 7-19   在二叉搜索树中删除节点(度为 0 )如图 7-16 所示,「二叉搜索树 binary search tree」满足以下条件。

  1. 对于根节点,左子树中所有节点的值 < 根节点的值 < 右子树中所有节点的值。
  2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 1. 。

二叉搜索树

图 7-16   二叉搜索树

二叉搜索树的操作

我们将二叉搜索树封装为一个类 ArrayBinaryTree ,并声明一个成员变量 root ,指向树的根节点。

1.   查找节点

给定目标节点值 num ,可以根据二叉搜索树的性质来查找。如图 7-17 所示,我们声明一个节点 cur ,从二叉树的根节点 root 出发,循环比较节点值 cur.val 和 num 之间的大小关系。

  • 若 cur.val < num ,说明目标节点在 cur 的右子树中,因此执行 cur = cur.right 。
  • 若 cur.val > num ,说明目标节点在 cur 的左子树中,因此执行 cur = cur.left 。
  • 若 cur.val = num ,说明找到目标节点,跳出循环并返回该节点。

二叉搜索树查找节点示例

bst_search_step2

bst_search_step3

bst_search_step4

图 7-17   二叉搜索树查找节点示例

二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 O(logn) 时间。

binary_search_tree.cpp

/* 查找节点 */
TreeNode *search(int num) {
    TreeNode *cur = root;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 目标节点在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 目标节点在 cur 的左子树中
        else if (cur->val > num)
            cur = cur->left;
        // 找到目标节点,跳出循环
        else
            break;
    }
    // 返回目标节点
    return cur;
}

2.   插入节点

给定一个待插入元素 num ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如图 7-18 所示。

  1. 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和 num 的大小关系循环向下搜索,直到越过叶节点(遍历至 None )时跳出循环。
  2. 在该位置插入节点:初始化节点 num ,将该节点置于 None 的位置。

在二叉搜索树中插入节点

图 7-18   在二叉搜索树中插入节点

在代码实现中,需要注意以下两点。

  • 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
  • 为了实现插入节点,我们需要借助节点 pre 保存上一轮循环的节点。这样在遍历至 None 时,我们可以获取到其父节点,从而完成节点插入操作。
binary_search_tree.cpp

/* 插入节点 */
void insert(int num) {
    // 若树为空,则初始化根节点
    if (root == nullptr) {
        root = new TreeNode(num);
        return;
    }
    TreeNode *cur = root, *pre = nullptr;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 找到重复节点,直接返回
        if (cur->val == num)
            return;
        pre = cur;
        // 插入位置在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 插入位置在 cur 的左子树中
        else
            cur = cur->left;
    }
    // 插入节点
    TreeNode *node = new TreeNode(num);
    if (pre->val < num)
        pre->right = node;
    else
        pre->left = node;
}

与查找节点相同,插入节点使用 O(logn) 时间。

3.   删除节点

先在二叉树中查找到目标节点,再将其从二叉树中删除。

与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。

因此,我们需要根据目标节点的子节点数量,共分为 0、1 和 2 这三种情况,执行对应的删除节点操作。

如图 7-19 所示,当待删除节点的度为 0 时,表示该节点是叶节点,可以直接删除。

在二叉搜索树中删除节点(度为 0 )

图 7-19   在二叉搜索树中删除节点(度为 0 )

如图 7-20 所示,当待删除节点的度为 1 时,将待删除节点替换为其子节点即可。

在二叉搜索树中删除节点(度为 1 )

图 7-20   在二叉搜索树中删除节点(度为 1 )

当待删除节点的度为 2 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树“左 < 根 < 右”的性质,因此这个节点可以是右子树的最小节点或左子树的最大节点。

假设我们选择右子树的最小节点(即中序遍历的下一个节点),则删除操作流程如图 7-21 所示。

  1. 找到待删除节点在“中序遍历序列”中的下一个节点,记为 tmp 。
  2. 将 tmp 的值覆盖待删除节点的值,并在树中递归删除节点 tmp 。

在二叉搜索树中删除节点(度为 2 )

bst_remove_case3_step2

bst_remove_case3_step3

bst_remove_case3_step4

图 7-21   在二叉搜索树中删除节点(度为 2 )

删除节点操作同样使用 O(logn) 时间,其中查找待删除节点需要 O(logn) 时间,获取中序遍历后继节点需要 O(logn) 时间。

binary_search_tree.cpp

/* 删除节点 */
void remove(int num) {
    // 若树为空,直接提前返回
    if (root == nullptr)
        return;
    TreeNode *cur = root, *pre = nullptr;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 找到待删除节点,跳出循环
        if (cur->val == num)
            break;
        pre = cur;
        // 待删除节点在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 待删除节点在 cur 的左子树中
        else
            cur = cur->left;
    }
    // 若无待删除节点,则直接返回
    if (cur == nullptr)
        return;
    // 子节点数量 = 0 or 1
    if (cur->left == nullptr || cur->right == nullptr) {
        // 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
        TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
        // 删除节点 cur
        if (cur != root) {
            if (pre->left == cur)
                pre->left = child;
            else
                pre->right = child;
        } else {
            // 若删除节点为根节点,则重新指定根节点
            root = child;
        }
        // 释放内存
        delete cur;
    }
    // 子节点数量 = 2
    else {
        // 获取中序遍历中 cur 的下一个节点
        TreeNode *tmp = cur->right;
        while (tmp->left != nullptr) {
            tmp = tmp->left;
        }
        int tmpVal = tmp->val;
        // 递归删除节点 tmp
        remove(tmp->val);
        // 用 tmp 覆盖 cur
        cur->val = tmpVal;
    }
}

4.   中序遍历有序

如图 7-22 所示,二叉树的中序遍历遵循“左 → 根 → 右”的遍历顺序,而二叉搜索树满足“左子节点 < 根节点 < 右子节点”的大小关系。

这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:二叉搜索树的中序遍历序列是升序的。

利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 O(n) 时间,无须进行额外的排序操作,非常高效。

二叉搜索树的中序遍历序列

图 7-22   二叉搜索树的中序遍历序列

二叉搜索树的效率

给定一组数据,我们考虑使用数组或二叉搜索树存储。观察表 7-2 ,二叉搜索树的各项操作的时间复杂度都是对数阶,具有稳定且高效的性能表现。只有在高频添加、低频查找删除的数据适用场景下,数组比二叉搜索树的效率更高。

表 7-2   数组与搜索树的效率对比

无序数组二叉搜索树
查找元素O(n)O(logn)
插入元素O(1)O(logn)
删除元素O(n)O(logn)

在理想情况下,二叉搜索树是“平衡”的,这样就可以在 log⁡n 轮循环内查找任意节点。

然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为图 7-23 所示的链表,这时各种操作的时间复杂度也会退化为 O(n) 。

二叉搜索树的退化

图 7-23   二叉搜索树的退化

二叉搜索树常见应用

  • 用作系统中的多级索引,实现高效的查找、插入、删除操作。
  • 作为某些搜索算法的底层数据结构。
  • 用于存储数据流,以保持其有序状态。


以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号