C++桶排序

2023-09-20 09:21 更新

前述的几种排序算法都属于“基于比较的排序算法”,它们通过比较元素间的大小来实现排序。此类排序算法的时间复杂度无法超越 O(nlog⁡n) 。接下来,我们将探讨几种“非比较排序算法”,它们的时间复杂度可以达到线性阶。

「桶排序 bucket sort」是分治策略的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。

11.8.1   算法流程

考虑一个长度为 n 的数组,元素是范围 [0,1) 的浮点数。桶排序的流程如图 11-13 所示。

  1. 初始化 k 个桶,将 n 个元素分配到 k 个桶中。
  2. 对每个桶分别执行排序(本文采用编程语言的内置排序函数)。
  3. 按照桶的从小到大的顺序,合并结果。

桶排序算法流程

图 11-13   桶排序算法流程


bucket_sort.cpp

/* 桶排序 */
void bucketSort(vector<float> &nums) {
    // 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
    int k = nums.size() / 2;
    vector<vector<float>> buckets(k);
    // 1. 将数组元素分配到各个桶中
    for (float num : nums) {
        // 输入数据范围 [0, 1),使用 num * k 映射到索引范围 [0, k-1]
        int i = num * k;
        // 将 num 添加进桶 bucket_idx
        buckets[i].push_back(num);
    }
    // 2. 对各个桶执行排序
    for (vector<float> &bucket : buckets) {
        // 使用内置排序函数,也可以替换成其他排序算法
        sort(bucket.begin(), bucket.end());
    }
    // 3. 遍历桶合并结果
    int i = 0;
    for (vector<float> &bucket : buckets) {
        for (float num : bucket) {
            nums[i++] = num;
        }
    }
}

11.8.2   算法特性

  • 时间复杂度 O(n+k) :假设元素在各个桶内平均分布,那么每个桶内的元素数量为 nk 。假设排序单个桶使用 O(nklognk) 时间,则排序所有桶使用 O(nlognk) 时间。当桶数量 k 比较大时,时间复杂度则趋向于 O(n) 。合并结果时需要遍历所有桶和元素,花费 O(n+k) 时间。
  • 自适应排序:在最坏情况下,所有数据被分配到一个桶中,且排序该桶使用 O(n2) 时间。
  • 空间复杂度 O(n+k)、非原地排序:需要借助 k 个桶和总共 n 个元素的额外空间。
  • 桶排序是否稳定取决于排序桶内元素的算法是否稳定。

11.8.3   如何实现平均分配

桶排序的时间复杂度理论上可以达到 O(n) ,关键在于将元素均匀分配到各个桶中,因为实际数据往往不是均匀分布的。例如,我们想要将淘宝上的所有商品按价格范围平均分配到 10 个桶中,但商品价格分布不均,低于 100 元的非常多,高于 1000 元的非常少。若将价格区间平均划分为 10 份,各个桶中的商品数量差距会非常大。

为实现平均分配,我们可以先设定一个大致的分界线,将数据粗略地分到 3 个桶中。分配完毕后,再将商品较多的桶继续划分为 3 个桶,直至所有桶中的元素数量大致相等。

如图 11-14 所示,这种方法本质上是创建一个递归树,目标是让叶节点的值尽可能平均。当然,不一定要每轮将数据划分为 3 个桶,具体划分方式可根据数据特点灵活选择。

递归划分桶

图 11-14   递归划分桶

如果我们提前知道商品价格的概率分布,则可以根据数据概率分布设置每个桶的价格分界线。值得注意的是,数据分布并不一定需要特意统计,也可以根据数据特点采用某种概率模型进行近似。

如图 11-15 所示,我们假设商品价格服从正态分布,这样就可以合理地设定价格区间,从而将商品平均分配到各个桶中。

根据概率分布划分桶

图 11-15   根据概率分布划分桶


以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号