D编程 范围(Ranges)
范围range是元素访问的抽象,范围强调如何访问容器元素,而不是如何实现容器。
Number ranges
数字范围是非常常用,这些数字范围是int类型的,下面是一些数字范围的示例-
//Example 1
foreach (value; 3..7)
//Example 2
int[] slice=array[5..10];
Phobos Ranges
与结构和类接口有关的范围是phobos ranges, Phobos是D语言编译器随附的官方运行时和标准库。
有多种类型的范围,包括-
- InputRange
- ForwardRange
- BidirectionalRange
- RandomAccessRange
- OutputRange
InputRange
最简单的范围是输入范围,其他范围对它们所基于的范围提出了更高的要求,InputRange需要三个函数-
- empty - 指定范围是否为空,当范围被认为是空时,返回true;否则为false。
- front - 在范围的开头提供对元素的访问。
- popFront - 通过删除第一个元素,从头开始缩短范围。
import std.stdio;
import std.string;
struct Student {
string name;
int number;
string toString() const {
return format("%s(%s)", name, number);
}
}
struct School {
Student[] students;
}
struct StudentRange {
Student[] students;
this(School school) {
this.students=school.students;
}
@property bool empty() const {
return students.length == 0;
}
@property ref Student front() {
return students[0];
}
void popFront() {
students=students[1 .. $];
}
}
void main() {
auto school=School([ Student("Raj", 1), Student("John", 2), Student("Ram", 3)]);
auto range=StudentRange(school);
writeln(range);
writeln(school.students.length);
writeln(range.front);
range.popFront;
writeln(range.empty);
writeln(range);
}
编译并执行上述代码后,将产生以下输出-
[Raj(1), John(2), Ram(3)]
3
Raj(1)
false
[John(2), Ram(3)]
ForwardRange
ForwardRange另外还需要InputRange的其他三个函数中的save函数,并在调用save函数时返回范围range的副本。
import std.array;
import std.stdio;
import std.string;
import std.range;
struct FibonacciSeries {
int first=0;
int second=1;
enum empty=false; //infinite range
@property int front() const {
return first;
}
void popFront() {
int third=first + second;
first=second;
second=third;
}
@property FibonacciSeries save() const {
return this;
}
}
void report(T)(const dchar[] title, const ref T range) {
writefln("%s: %s", title, range.take(5));
}
void main() {
auto range=FibonacciSeries();
report("Original range", range);
range.popFrontN(2);
report("After removing two elements", range);
auto theCopy=range.save;
report("The copy", theCopy);
range.popFrontN(3);
report("After removing three more elements", range);
report("The copy", theCopy);
}
编译并执行上述代码后,将产生以下输出-
Original range: [0, 1, 1, 2, 3]
After removing two elements: [1, 2, 3, 5, 8]
The copy: [1, 2, 3, 5, 8]
After removing three more elements: [5, 8, 13, 21, 34]
The copy: [1, 2, 3, 5, 8]
BidirectionalRange
除了ForwardRange函数外,BidirectionalRange还提供了两个函数,popBack函数类似于popFront函数,它从范围中删除最后一个元素。
import std.array;
import std.stdio;
import std.string;
struct Reversed {
int[] range;
this(int[] range) {
this.range=range;
}
@property bool empty() const {
return range.empty;
}
@property int front() const {
return range.back; //reverse
}
@property int back() const {
return range.front; //reverse
}
void popFront() {
range.popBack();
}
void popBack() {
range.popFront();
}
}
void main() {
writeln(Reversed([ 1, 2, 3]));
}
编译并执行上述代码后,将产生以下输出-
[3, 2, 1]
Infinite RandomAccessRange
与ForwardRange相比,还需要opIndex(),同样,在编译时将空函数的值称为false。
import std.array;
import std.stdio;
import std.string;
import std.range;
import std.algorithm;
class SquaresRange {
int first;
this(int first=0) {
this.first=first;
}
enum empty=false;
@property int front() const {
return opIndex(0);
}
void popFront() {
++first;
}
@property SquaresRange save() const {
return new SquaresRange(first);
}
int opIndex(size_t index) const {
/* This function operates at constant time */
immutable integerValue=first + cast(int)index;
return integerValue * integerValue;
}
}
bool are_lastTwoDigitsSame(int value) {
/* Must have at least two digits */
if (value < 10) {
return false;
}
/* Last two digits must be divisible by 11 */
immutable lastTwoDigits=value % 100;
return (lastTwoDigits % 11) == 0;
}
void main() {
auto squares=new SquaresRange();
writeln(squares[5]);
writeln(squares[10]);
squares.popFrontN(5);
writeln(squares[0]);
writeln(squares.take(50).filter!are_lastTwoDigitsSame);
}
编译并执行上述代码后,将产生以下输出-
25
100
25
[100, 144, 400, 900, 1444, 1600, 2500]
Finite RandomAccessRange
与Bidirectional range相比,还需要opIndex()和length。这将在使用斐波那契数列和先前使用的Squares Range示例进行解释。
import std.array;
import std.stdio;
import std.string;
import std.range;
import std.algorithm;
struct FibonacciSeries {
int first=0;
int second=1;
enum empty=false; //infinite range
@property int front() const {
return first;
}
void popFront() {
int third=first + second;
first=second;
second=third;
}
@property FibonacciSeries save() const {
return this;
}
}
void report(T)(const dchar[] title, const ref T range) {
writefln("%40s: %s", title, range.take(5));
}
class SquaresRange {
int first;
this(int first=0) {
this.first=first;
}
enum empty=false;
@property int front() const {
return opIndex(0);
}
void popFront() {
++first;
}
@property SquaresRange save() const {
return new SquaresRange(first);
}
int opIndex(size_t index) const {
/* This function operates at constant time */
immutable integerValue=first + cast(int)index;
return integerValue * integerValue;
}
}
bool are_lastTwoDigitsSame(int value) {
/* Must have at least two digits */
if (value < 10) {
return false;
}
/* Last two digits must be divisible by 11 */
immutable lastTwoDigits=value % 100;
return (lastTwoDigits % 11) == 0;
}
struct Together {
const(int)[][] slices;
this(const(int)[][] slices ...) {
this.slices=slices.dup;
clearFront();
clearBack();
}
private void clearFront() {
while (!slices.empty && slices.front.empty) {
slices.popFront();
}
}
private void clearBack() {
while (!slices.empty && slices.back.empty) {
slices.popBack();
}
}
@property bool empty() const {
return slices.empty;
}
@property int front() const {
return slices.front.front;
}
void popFront() {
slices.front.popFront();
clearFront();
}
@property Together save() const {
return Together(slices.dup);
}
@property int back() const {
return slices.back.back;
}
void popBack() {
slices.back.popBack();
clearBack();
}
@property size_t length() const {
return reduce!((a, b) => a + b.length)(size_t.init, slices);
}
int opIndex(size_t index) const {
/* Save the index for the error message */
immutable originalIndex=index;
foreach (slice; slices) {
if (slice.length > index) {
return slice[index];
} else {
index -= slice.length;
}
}
throw new Exception(
format("Invalid index: %s (length: %s)", originalIndex, this.length));
}
}
void main() {
auto range=Together(FibonacciSeries().take(10).array, [ 777, 888 ],
(new SquaresRange()).take(5).array);
writeln(range.save);
}
编译并执行上述代码后,将产生以下输出-
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 777, 888, 0, 1, 4, 9, 16]
OutputRange
OutputRange表示流元素输出,类似于将字符发送到stdout,OutputRange需要支持put(range,element)操作,put()是在std.range模块中定义的函数。它在编译时确定范围和元素的函数,并使用最合适的方法来输出元素,一个简单的例子如下所示。
import std.algorithm;
import std.stdio;
struct MultiFile {
string delimiter;
File[] files;
this(string delimiter, string[] fileNames ...) {
this.delimiter=delimiter;
/* stdout is always included */
this.files ~= stdout;
/* A File object for each file name */
foreach (fileName; fileNames) {
this.files ~= File(fileName, "w");
}
}
void put(T)(T element) {
foreach (file; files) {
file.write(element, delimiter);
}
}
}
void main() {
auto output=MultiFile("\n", "output_0", "output_1");
copy([ 1, 2, 3], output);
copy([ "red", "blue", "green" ], output);
}
编译并执行上述代码后,将产生以下输出-
[1, 2, 3]
["red", "blue", "green"]
更多建议: