搜索
2018-02-24 15:53 更新
搜索
本章详细研究这样一个搜索问题:在没有其他相关数据的情况下,如何存储一组整数? 为些介绍了5种数据结构:有序数组,有序链表,二叉搜索树,箱,位向量。
其中,二叉搜索树应该熟练掌握,以下是一种实现:
struct Node {
int data;
Node *lchild, *rchild, *parent;
Node(): lchild(NULL), rchild(NULL), parent(NULL) { }
};
class BST {
private:
static const int kMax = 1000;
Node *root_, *parent_, nodes_[kMax];
int size_;
private:
Node* minimum(Node* node);
Node* maximum(Node* node);
Node* successor(Node* node);
Node* predecessor(Node* node);
void Insert(Node* &node, int x);
void InorderTraver(Node* node);
Node* Find(Node* node, int x);
public:
BST(): root_(NULL), parent_(NULL), size_(0) {
memset(nodes_, '\0', sizeof(nodes_));
}
void Insert(int x);
void InorderTraver();
Node* Find(int x);
void Remove(Node* z);
};
Node* BST::minimum(Node* node) {
if(node == NULL) return NULL;
while(node->lchild)
node = node->lchild;
return node;
}
Node* BST::maximum(Node* node) {
if(node == NULL) return NULL;
while(node->rchild)
node = node->rchild;
return node;
}
Node* BST::successor(Node* node) {
if(node->rchild)
return minimum(node->rchild);
Node *y = node->parent;
while(y && node==y->rchild) {
node = y;
y = node->parent;
}
return y;
}
Node* BST::predecessor(Node* node) {
if(node->lchild)
return maximum(node->lchild);
Node *y = node->parent;
while(y && node==y->lchild) {
node = y;
y = node->parent;
}
return y;
}
void BST::Insert(Node* &node, int x) {
if(node == NULL) {
nodes_[size_].data = x;
nodes_[size_].parent = parent_;
node = &nodes_[size_];
++size_;
return;
}
parent_ = node;
if(x < node->data)
Insert(node->lchild, x);
else
Insert(node->rchild, x);
}
void BST::Insert(int x) {
Insert(root_, x);
}
void BST::InorderTraver(Node* node) {
if(node == NULL) return;
InorderTraver(node->lchild);
cout<<node->data<<" ";
InorderTraver(node->rchild);
}
void BST::InorderTraver() {
InorderTraver(root_);
}
Node* BST::Find(Node* node, int x) {
if(node == NULL) return NULL;
if(x < node->data) return Find(node->lchild, x);
else if(x > node->data) return Find(node->rchild, x);
else return node;
}
Node* BST::Find(int x) {
return Find(root_, x);
}
void BST::Remove(Node* z) {
if(!z->lchild && !z->rchild) {
if(z == root_) root_ = NULL;
else if(z == z->parent->lchild)
z->parent->lchild = NULL;
else
z->parent->rchild = NULL;
}
else if(z->lchild==NULL || z->rchild==NULL) {
if(z == root_) {
if(z->lchild) root_ = z->lchild;
else root_ = z->rchild;
root_->parent = NULL;
}
else {
if(z==z->parent->lchild && z->lchild) {
z->parent->lchild = z->lchild;
z->lchild->parent = z->parent;
}
else if(z==z->parent->lchild && z->rchild) {
z->parent->lchild = z->rchild;
z->rchild->parent = z->parent;
}
else if(z==z->parent->rchild && z->lchild) {
z->parent->rchild = z->lchild;
z->lchild->parent = z->parent;
}
else {
z->parent->rchild = z->rchild;
z->rchild->parent = z->parent;
}
}
}
else {
Node *s = predecessor(z);
z->data = s->data;
if(z == s->parent)
s->parent->lchild = s->lchild;
else
s->parent->rchild = s->lchild;
if(s->lchild)
s->lchild->parent = s->parent;
}
}
以上内容是否对您有帮助:
← 取样问题
更多建议: