搜索

2018-02-24 15:53 更新

搜索

本章详细研究这样一个搜索问题:在没有其他相关数据的情况下,如何存储一组整数? 为些介绍了5种数据结构:有序数组,有序链表,二叉搜索树,箱,位向量。

其中,二叉搜索树应该熟练掌握,以下是一种实现:

struct Node {
    int data;
    Node *lchild, *rchild, *parent;
    Node(): lchild(NULL), rchild(NULL), parent(NULL) { }
};

class BST {
private:
    static const int kMax = 1000;
    Node *root_, *parent_, nodes_[kMax];
    int size_;

private:
    Node* minimum(Node* node);
    Node* maximum(Node* node);
    Node* successor(Node* node);
    Node* predecessor(Node* node);
    void Insert(Node* &node, int x);
    void InorderTraver(Node* node);
    Node* Find(Node* node, int x);

public:
    BST(): root_(NULL), parent_(NULL), size_(0) {
        memset(nodes_, '\0', sizeof(nodes_));
    }
    void Insert(int x);
    void InorderTraver();
    Node* Find(int x);
    void Remove(Node* z);
};

Node* BST::minimum(Node* node) {
    if(node == NULL) return NULL;
    while(node->lchild)
        node = node->lchild;
    return node;
}

Node* BST::maximum(Node* node) {
    if(node == NULL) return NULL;
    while(node->rchild)
        node = node->rchild;
    return node;
}

Node* BST::successor(Node* node) {
    if(node->rchild)
        return minimum(node->rchild);
    Node *y = node->parent;
    while(y && node==y->rchild) {
        node = y;
        y = node->parent;
    }
    return y;
}

Node* BST::predecessor(Node* node) {
    if(node->lchild)
        return maximum(node->lchild);
    Node *y = node->parent;
    while(y && node==y->lchild) {
        node = y;
        y = node->parent;
    }
    return y;
}

void BST::Insert(Node* &node, int x) {
    if(node == NULL) {
        nodes_[size_].data = x;
        nodes_[size_].parent = parent_;
        node = &nodes_[size_];
        ++size_;
        return;
    }
    parent_ = node;
    if(x < node->data)
        Insert(node->lchild, x);
    else
        Insert(node->rchild, x);
}

void BST::Insert(int x) {
    Insert(root_, x);
}

void BST::InorderTraver(Node* node) {
    if(node == NULL) return;
    InorderTraver(node->lchild);
    cout<<node->data<<" ";
    InorderTraver(node->rchild);
}

void BST::InorderTraver() {
    InorderTraver(root_);
}

Node* BST::Find(Node* node, int x) {
    if(node == NULL) return NULL;
    if(x < node->data) return Find(node->lchild, x);
    else if(x > node->data) return Find(node->rchild, x);
    else return node;
}

Node* BST::Find(int x) {
    return Find(root_, x);
}

void BST::Remove(Node* z) {
    if(!z->lchild && !z->rchild) {
        if(z == root_) root_ = NULL;
        else if(z == z->parent->lchild)
            z->parent->lchild = NULL;
        else
            z->parent->rchild = NULL;
    }

    else if(z->lchild==NULL || z->rchild==NULL) {
        if(z == root_) {
            if(z->lchild) root_ = z->lchild;
            else root_ = z->rchild;
            root_->parent = NULL;
        }
        else {
            if(z==z->parent->lchild && z->lchild) {
                z->parent->lchild = z->lchild;
                z->lchild->parent = z->parent;
            }
            else if(z==z->parent->lchild && z->rchild) {
                z->parent->lchild = z->rchild;
                z->rchild->parent = z->parent;
            }
            else if(z==z->parent->rchild && z->lchild) {
                z->parent->rchild = z->lchild;
                z->lchild->parent = z->parent;
            }
            else {
                z->parent->rchild = z->rchild;
                z->rchild->parent = z->parent;
            }
        }
    }

    else {
        Node *s = predecessor(z);
        z->data = s->data;
        if(z == s->parent)
            s->parent->lchild = s->lchild;
        else
            s->parent->rchild = s->lchild;

        if(s->lchild)
            s->lchild->parent = s->parent;
    }
}
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号