HBase MapReduce摘要到文件示例
2018-04-10 10:52 更新
HBase MapReduce摘要到文件示例
这与HBase MapReduce摘要到HBase示例非常相似,不同之处在于,它将 HBase 用作 MapReduce 源,但将 HDFS 用作接收器。差异在于作业设置和减速器中。映射器保持不变。
Configuration config = HBaseConfiguration.create();
Job job = new Job(config,"ExampleSummaryToFile");
job.setJarByClass(MySummaryFileJob.class); // class that contains mapper and reducer
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs
TableMapReduceUtil.initTableMapperJob(
sourceTable, // input table
scan, // Scan instance to control CF and attribute selection
MyMapper.class, // mapper class
Text.class, // mapper output key
IntWritable.class, // mapper output value
job);
job.setReducerClass(MyReducer.class); // reducer class
job.setNumReduceTasks(1); // at least one, adjust as required
FileOutputFormat.setOutputPath(job, new Path("/tmp/mr/mySummaryFile")); // adjust directories as required
boolean b = job.waitForCompletion(true);
if (!b) {
throw new IOException("error with job!");
}
如上所述,前面的Mapper可以与此示例保持不变。至于减速机,它是一种“通用”的减速机,而不是扩展的制表机和发射装置。
public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int i = 0;
for (IntWritable val : values) {
i += val.get();
}
context.write(key, new IntWritable(i));
}
}
以上内容是否对您有帮助:
更多建议: