Apache Storm Trident

2018-01-04 18:55 更新

TridentStorm的延伸。像Storm,Trident也是由Twitter开发的。开发Trident的主要原因是在Storm上提供高级抽象,以及状态流处理和低延迟分布式查询。

Trident使用spoutbolt,但是这些低级组件在执行之前由Trident自动生成。 Trident具有函数,过滤器,联接,分组和聚合。

Trident将流处理为一系列批次,称为事务。通常,这些小批量的大小将是大约数千或数百万个元组,这取决于输入流。这样,Trident不同于Storm,它执行元组一元组处理。

批处理概念非常类似于数据库事务。每个事务都分配了一个事务ID。该事务被认为是成功的,一旦其所有的处理完成。然而,处理事务的元组中的一个的失败将导致整个事务被重传。对于每个批次,Trident将在事务开始时调用beginCommit,并在结束时提交。

Trident拓扑

Trident API公开了一个简单的选项,使用“TridentTopology”类创建Trident拓扑。基本上,Trident拓扑从流出接收输入流,并对流上执行有序的操作序列(滤波,聚合,分组等)。Storm元组被替换为Trident元组,bolt被操作替换。一个简单的Trident拓扑可以创建如下 -

TridentTopology topology = new TridentTopology();

Trident Tuples

Trident Tuples是一个命名的值列表。TridentTuple接口是Trident拓扑的数据模型。TridentTuple接口是可由Trident拓扑处理的数据的基本单位。

Trident Spout

Trident spout与类似于Storm spout,附加选项使用Trident的功能。实际上,我们仍然可以使用IRichSpout,我们在Storm拓扑中使用它,但它本质上是非事务性的,我们将无法使用Trident提供的优点。

具有使用Trident的特征的所有功能的基本spout是“ITridentSpout”。它支持事务和不透明的事务语义。其他的spouts是IBatchSpout,IPartitionedTridentSpout和IOpaquePartitionedTridentSpout。

除了这些通用spouts,Trident有许多样品实施trident spout其中之一是FeederBatchSpout输出,我们可以使用它发送trident tuples的命名列表,而不必担心批处理,并行性等。

FeederBatchSpout创建和数据馈送可以如下所示完成 -

TridentTopology topology = new TridentTopology();
FeederBatchSpout testSpout = new FeederBatchSpout(
   ImmutableList.of("fromMobileNumber", "toMobileNumber", “duration”));
topology.newStream("fixed-batch-spout", testSpout)
testSpout.feed(ImmutableList.of(new Values("1234123401", "1234123402", 20)));

Trident操作

Trident依靠“Trident操作”来处理trident tuples的输入流。Trident API具有多个内置操作来处理简单到复杂的流处理。这些操作的范围从简单验证到复杂的trident tuples分组和聚合。让我们经历最重要和经常使用的操作。

过滤

过滤器是用于执行输入验证任务的对象。Trident过滤器获取trident tuples字段的子集作为输入,并根据是否满足某些条件返回真或假。如果返回true,则该元组保存在输出流中;否则,从流中移除元组。过滤器将基本上继承自BaseFilter类并实现isKeep方法。这里是一个滤波器操作的示例实现 -

public class MyFilter extends BaseFilter {
   public boolean isKeep(TridentTuple tuple) {
      return tuple.getInteger(1) % 2 == 0;
   }
}

input

[1, 2]
[1, 3]
[1, 4]

output

[1, 2]
[1, 4]

可以使用“each”方法在拓扑中调用过滤器功能。“Fields”类可以用于指定输入(trident tuple的子集)。示例代码如下 -

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
.each(new Fields("a", "b"), new MyFilter())

函数

函数是用于对单个trident tuple执行简单操作的对象。它需要一个trident tuple字段的子集,并发出零个或多个新的trident tuple字段。

函数基本上从BaseFunction类继承并实现execute方法。下面给出了一个示例实现:

public class MyFunction extends BaseFunction {
   public void execute(TridentTuple tuple, TridentCollector collector) {
      int a = tuple.getInteger(0);
      int b = tuple.getInteger(1);
      collector.emit(new Values(a + b));
   }
}

input

[1, 2]
[1, 3]
[1, 4]

output

[1, 2, 3]
[1, 3, 4]
[1, 4, 5]

与过滤操作类似,可以使用每个方法在拓扑中调用函数操作。示例代码如下 -

TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout)
   .each(new Fields(“a, b"), new MyFunction(), new Fields(“d")));

聚合

聚合是用于对输入批处理或分区或流执行聚合操作的对象。Trident有三种类型的聚合。他们如下 -

  • aggregate -单独聚合每批trident tuple。在聚合过程期间,首先使用全局分组将元组重新分区,以将同一批次的所有分区组合到单个分区中。

  • partitionAggregate -聚合每个分区,而不是整个trident tuple。分区集合的输出完全替换输入元组。分区集合的输出包含单个字段元组。

  • persistentaggregate -聚合所有批次中的所有trident tuple,并将结果存储在内存或数据库中。

TridentTopology topology = new TridentTopology();

// aggregate operation
topology.newStream("spout", spout)
   .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))
   .aggregate(new Count(), new Fields(“count”))
	
// partitionAggregate operation
topology.newStream("spout", spout)
   .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))
   .partitionAggregate(new Count(), new Fields(“count"))
	
// persistentAggregate - saving the count to memory
topology.newStream("spout", spout)
   .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))
   .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"));

可以使用CombinerAggregator,ReducerAggregator或通用Aggregator接口创建聚合操作。上面例子中使用的“计数”聚合器是内置聚合器之一,它使用“CombinerAggregator”实现,实现如下 -

public class Count implements CombinerAggregator<Long> {
   @Override
   public Long init(TridentTuple tuple) {
      return 1L;
   }
	
   @Override
   public Long combine(Long val1, Long val2) {
      return val1 + val2;
   }
	
   @Override
   public Long zero() {
      return 0L;
   }
}

分组

分组操作是一个内置操作,可以由groupBy方法调用。groupBy方法通过在指定字段上执行partitionBy来重新分区流,然后在每个分区中,它将组字段相等的元组组合在一起。通常,我们使用“groupBy”以及“persistentAggregate”来获得分组聚合。示例代码如下 -

TridentTopology topology = new TridentTopology();

// persistentAggregate - saving the count to memory
topology.newStream("spout", spout)
   .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))
   .groupBy(new Fields(“d”)
   .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"));

合并和连接

合并和连接可以分别通过使用“合并”和“连接”方法来完成。合并组合一个或多个流。加入类似于合并,除了加入使用来自两边的trident tuple字段来检查和连接两个流的事实。此外,加入将只在批量级别工作。示例代码如下 -

TridentTopology topology = new TridentTopology();
topology.merge(stream1, stream2, stream3);
topology.join(stream1, new Fields("key"), stream2, new Fields("x"), 
   new Fields("key", "a", "b", "c"));

状态维护

Trident提供了状态维护的机制。状态信息可以存储在拓扑本身中,否则也可以将其存储在单独的数据库中。原因是维护一个状态,如果任何元组在处理过程中失败,则重试失败的元组。这会在更新状态时产生问题,因为您不确定此元组的状态是否已在之前更新过。如果在更新状态之前元组已经失败,则重试该元组将使状态稳定。然而,如果元组在更新状态后失败,则重试相同的元组将再次增加数据库中的计数并使状态不稳定。需要执行以下步骤以确保消息仅处理一次 -

  • 小批量处理元组。

  • 为每个批次分配唯一的ID。如果重试批次,则给予相同的唯一ID。

  • 状态更新在批次之间排序。例如,第二批次的状态更新将不可能,直到第一批次的状态更新完成为止。

分布式RPC

分布式RPC用于查询和检索Trident拓扑结果。 Storm有一个内置的分布式RPC服务器。分布式RPC服务器从客户端接收RPC请求并将其传递到拓扑。拓扑处理请求并将结果发送到分布式RPC服务器,分布式RPC服务器将其重定向到客户端。Trident的分布式RPC查询像正常的RPC查询一样执行,除了这些查询并行运行的事实。

什么时候使用Trident?

在许多使用情况下,如果要求是只处理一次查询,我们可以通过在Trident中编写拓扑来实现。另一方面,在Storm的情况下将难以实现精确的一次处理。因此,Trident将对那些需要一次处理的用例有用。Trident不适用于所有用例,特别是高性能用例,因为它增加了Storm的复杂性并管理状态。

Trident的工作实例

我们将把上一节中制定的呼叫日志分析器应用程序转换为Trident框架。由于其高级API,Trident应用程序将比普通风暴更容易。Storm基本上需要执行Trident中的Function,Filter,Aggregate,GroupBy,Join和Merge操作中的任何一个。最后,我们将使用LocalDRPC类启动DRPC服务器,并使用LocalDRPC类的execute方法搜索一些关键字。

格式化呼叫信息

FormatCall类的目的是格式化包括“呼叫者号码”和“接收者号码”的呼叫信息。完整的程序代码如下 -

编码:FormatCall.java

import backtype.storm.tuple.Values;

import storm.trident.operation.BaseFunction;
import storm.trident.operation.TridentCollector;
import storm.trident.tuple.TridentTuple;

public class FormatCall extends BaseFunction {
   @Override
   public void execute(TridentTuple tuple, TridentCollector collector) {
      String fromMobileNumber = tuple.getString(0);
      String toMobileNumber = tuple.getString(1);
      collector.emit(new Values(fromMobileNumber + " - " + toMobileNumber));
   }
}

CSVSplit

CSVSplit类的目的是基于“comma(,)”拆分输入字符串,并发出字符串中的每个字。此函数用于解析分布式查询的输入参数。完整的代码如下 -

编码:CSVSplit.java

import backtype.storm.tuple.Values;

import storm.trident.operation.BaseFunction;
import storm.trident.operation.TridentCollector;
import storm.trident.tuple.TridentTuple;

public class CSVSplit extends BaseFunction {
   @Override
   public void execute(TridentTuple tuple, TridentCollector collector) {
      for(String word: tuple.getString(0).split(",")) {
         if(word.length() > 0) {
            collector.emit(new Values(word));
         }
      }
   }
}

日志分析器

这是主要的应用程序。最初,应用程序将使用FeederBatchSpout初始化TridentTopology并提供调用者信息。Trident拓扑流可以使用TridentTopology类的newStream方法创建。类似地,Trident拓扑DRPC流可以使用TridentTopology类的newDRCPStream方法创建。可以使用LocalDRPC类创建一个简单的DRCP服务器LocalDRPC有execute方法来搜索一些关键字。完整的代码如下。

编码:LogAnalyserTrident.java

import java.util.*;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.LocalDRPC;
import backtype.storm.utils.DRPCClient;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;

import storm.trident.TridentState;
import storm.trident.TridentTopology;
import storm.trident.tuple.TridentTuple;

import storm.trident.operation.builtin.FilterNull;
import storm.trident.operation.builtin.Count;
import storm.trident.operation.builtin.Sum;
import storm.trident.operation.builtin.MapGet;
import storm.trident.operation.builtin.Debug;
import storm.trident.operation.BaseFilter;

import storm.trident.testing.FixedBatchSpout;
import storm.trident.testing.FeederBatchSpout;
import storm.trident.testing.Split;
import storm.trident.testing.MemoryMapState;

import com.google.common.collect.ImmutableList;

public class LogAnalyserTrident {
   public static void main(String[] args) throws Exception {
      System.out.println("Log Analyser Trident");
      TridentTopology topology = new TridentTopology();
		
      FeederBatchSpout testSpout = new FeederBatchSpout(ImmutableList.of("fromMobileNumber",
         "toMobileNumber", "duration"));

      TridentState callCounts = topology
         .newStream("fixed-batch-spout", testSpout)
         .each(new Fields("fromMobileNumber", "toMobileNumber"), 
         new FormatCall(), new Fields("call"))
         .groupBy(new Fields("call"))
         .persistentAggregate(new MemoryMapState.Factory(), new Count(), 
         new Fields("count"));

      LocalDRPC drpc = new LocalDRPC();

      topology.newDRPCStream("call_count", drpc)
         .stateQuery(callCounts, new Fields("args"), new MapGet(), new Fields("count"));

      topology.newDRPCStream("multiple_call_count", drpc)
         .each(new Fields("args"), new CSVSplit(), new Fields("call"))
         .groupBy(new Fields("call"))
         .stateQuery(callCounts, new Fields("call"), new MapGet(), 
         new Fields("count"))
         .each(new Fields("call", "count"), new Debug())
         .each(new Fields("count"), new FilterNull())
         .aggregate(new Fields("count"), new Sum(), new Fields("sum"));

      Config conf = new Config();
      LocalCluster cluster = new LocalCluster();
      cluster.submitTopology("trident", conf, topology.build());
      Random randomGenerator = new Random();
      int idx = 0;
		
      while(idx < 10) {
         testSpout.feed(ImmutableList.of(new Values("1234123401", 
            "1234123402", randomGenerator.nextInt(60))));

         testSpout.feed(ImmutableList.of(new Values("1234123401", 
            "1234123403", randomGenerator.nextInt(60))));

         testSpout.feed(ImmutableList.of(new Values("1234123401", 
            "1234123404", randomGenerator.nextInt(60))));

         testSpout.feed(ImmutableList.of(new Values("1234123402", 
            "1234123403", randomGenerator.nextInt(60))));

         idx = idx + 1;
      }

      System.out.println("DRPC : Query starts");
      System.out.println(drpc.execute("call_count","1234123401 - 1234123402"));
      System.out.println(drpc.execute("multiple_call_count", "1234123401 -
         1234123402,1234123401 - 1234123403"));
      System.out.println("DRPC : Query ends");

      cluster.shutdown();
      drpc.shutdown();

      // DRPCClient client = new DRPCClient("drpc.server.location", 3772);
   }
}

构建和运行应用程序

完整的应用程序有三个Java代码。他们如下 -

  • FormatCall.java
  • CSVSplit.java
  • LogAnalyerTrident.java

可以使用以下命令构建应用程序 -

javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*” *.java

可以使用以下命令运行应用程序 -

java -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:. LogAnalyserTrident

输出

一旦应用程序启动,应用程序将输出有关集群启动过程,操作处理,DRPC服务器和客户端信息的完整详细信息,以及最后的集群关闭过程。此输出将显示在控制台上,如下所示。

DRPC : Query starts
[["1234123401 - 1234123402",10]]
DEBUG: [1234123401 - 1234123402, 10]
DEBUG: [1234123401 - 1234123403, 10]
[[20]]
DRPC : Query ends
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号