定义公用事业,用于warm-start TF.Learn Estimators
2018-05-10 11:07 更新
#版权所有2017 TensorFlow作者.版权所有.
#根据Apache许可证2.0版(“许可证”)获得许可;
#除了符合许可证外,您不得使用此文件.
#您可以在获得许可证副本
#http://www.apache.org/licenses/LICENSE-2.0
#除非适用法律要求或以书面形式同意软件根据许可证分发的按“现状”分发,
#没有任何形式的保证或条件,无论是明示还是暗示.
#请参阅许可证以了解特定语言的管理权限和权限
#许可证下的限制.
#==============================================================================
“公用事业,用于warm-start TF.Learn Estimators.”
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import six
from tensorflow.python.framework import ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_ops
from tensorflow.python.training import checkpoint_utils
from tensorflow.python.training import saver
class VocabInfo(
collections.namedtuple("VocabInfo", [
"new_vocab",
"new_vocab_size",
"num_oov_buckets",
"old_vocab",
"old_vocab_size",
"backup_initializer",
])):
"""Vocabulary information for WarmStartSettings.
See @{tf.estimator.WarmStartSettings$WarmStartSettings} for examples of using
VocabInfo to warm-start.
Attributes:
new_vocab: [Required] A path to the new vocabulary file (used with the
model to be trained).
new_vocab_size: [Required] An integer indicating how many entries of the new
vocabulary will used in training.
num_oov_buckets: [Required] An integer indicating how many OOV buckets are
associated with the vocabulary.
old_vocab: [Required] A path to the old vocabulary file (used with the
checkpoint to be warm-started from).
old_vocab_size: [Optional] An integer indicating how many entries of the old
vocabulary were used in the creation of the checkpoint. If not provided,
the entire old vocabulary will be used.
backup_initializer: [Optional] A variable initializer used for variables
corresponding to new vocabulary entries and OOV. If not provided, these
entries will be zero-initialized.
"""
def __new__(cls,
new_vocab,
new_vocab_size,
num_oov_buckets,
old_vocab,
old_vocab_size=-1,
backup_initializer=None):
return super(VocabInfo, cls).__new__(
cls,
new_vocab,
new_vocab_size,
num_oov_buckets,
old_vocab,
old_vocab_size,
backup_initializer,
)
class WarmStartSettings(
collections.namedtuple("WarmStartSettings", [
"ckpt_to_initialize_from",
"vars_to_warm_start",
"var_name_to_vocab_info",
"var_name_to_prev_var_name",
])):
"""Settings for warm-starting in Estimators.
Example Use with canned `DNNEstimator`:
```
emb_vocab_file = tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_vocabulary_file(
"sc_vocab_file", "new_vocab.txt", vocab_size=100),
dimension=8)
emb_vocab_list = tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_vocabulary_list(
"sc_vocab_list", vocabulary_list=["a", "b"]),
dimension=8)
estimator = tf.estimator.DNNClassifier(
hidden_units=[128, 64], feature_columns=[emb_vocab_file, emb_vocab_list],
warm_start_from=ws)
```
where `ws` could be defined as:
Warm-start all weights in the model (input layer and hidden weights).
Either the directory or a specific checkpoint can be provided (in the case
of the former, the latest checkpoint will be used):
```
ws = WarmStartSettings(ckpt_to_initialize_from="/tmp")
ws = WarmStartSettings(ckpt_to_initialize_from="/tmp/model-1000")
```
Warm-start only the embeddings (input layer) and their accumulator variables:
```
ws = WarmStartSettings(ckpt_to_initialize_from="/tmp",
vars_to_warm_start=".*input_layer.*")
```
Warm-start everything except the optimizer accumulator variables
(DNN defaults to Adagrad):
```
ws = WarmStartSettings(ckpt_to_initialize_from="/tmp",
vars_to_warm_start="^(?!.*(Adagrad))")
```
Warm-start all weights but the embedding parameters corresponding to
`sc_vocab_file` have a different vocab from the one used in the current
model:
```
vocab_info = ws_util.VocabInfo(
new_vocab=sc_vocab_file.vocabulary_file,
new_vocab_size=sc_vocab_file.vocabulary_size,
num_oov_buckets=sc_vocab_file.num_oov_buckets,
old_vocab="old_vocab.txt"
)
ws = WarmStartSettings(
ckpt_to_initialize_from="/tmp",
var_name_to_vocab_info={
"input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
})
```
Warm-start only `sc_vocab_file` embeddings (and no other variables), which
have a different vocab from the one used in the current model:
```
vocab_info = ws_util.VocabInfo(
new_vocab=sc_vocab_file.vocabulary_file,
new_vocab_size=sc_vocab_file.vocabulary_size,
num_oov_buckets=sc_vocab_file.num_oov_buckets,
old_vocab="old_vocab.txt"
)
ws = WarmStartSettings(
ckpt_to_initialize_from="/tmp",
vars_to_warm_start=None,
var_name_to_vocab_info={
"input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
})
```
Warm-start all weights but the parameters corresponding to `sc_vocab_file`
have a different vocab from the one used in current checkpoint, and only
100 of those entries were used:
```
vocab_info = ws_util.VocabInfo(
new_vocab=sc_vocab_file.vocabulary_file,
new_vocab_size=sc_vocab_file.vocabulary_size,
num_oov_buckets=sc_vocab_file.num_oov_buckets,
old_vocab="old_vocab.txt",
old_vocab_size=100
)
ws = WarmStartSettings(
ckpt_to_initialize_from="/tmp",
var_name_to_vocab_info={
"input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
})
```
Warm-start all weights but the parameters corresponding to `sc_vocab_file`
have a different vocab from the one used in current checkpoint and the
parameters corresponding to `sc_vocab_list` have a different name from the
current checkpoint:
```
vocab_info = ws_util.VocabInfo(
new_vocab=sc_vocab_file.vocabulary_file,
new_vocab_size=sc_vocab_file.vocabulary_size,
num_oov_buckets=sc_vocab_file.num_oov_buckets,
old_vocab="old_vocab.txt",
old_vocab_size=100
)
ws = WarmStartSettings(
ckpt_to_initialize_from="/tmp",
var_name_to_vocab_info={
"input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
},
var_name_to_prev_var_name={
"input_layer/sc_vocab_list_embedding/embedding_weights":
"old_tensor_name"
})
```
Attributes:
ckpt_to_initialize_from: [Required] A string specifying the directory with
checkpoint file(s) or path to checkpoint from which to warm-start the
model parameters.
vars_to_warm_start: [Optional] A regular expression that captures which
variables to warm-start (see tf.get_collection). Defaults to `'.*'`,
which warm-starts all variables. If `None` is explicitly given, only
variables specified in `var_name_to_vocab_info` will be warm-started.
var_name_to_vocab_info: [Optional] Dict of variable names (strings) to
VocabInfo. The variable names should be "full" variables, not the names
of the partitions. If not explicitly provided, the variable is assumed to
have no vocabulary.
var_name_to_prev_var_name: [Optional] Dict of variable names (strings) to
name of the previously-trained variable in `ckpt_to_initialize_from`. If
not explicitly provided, the name of the variable is assumed to be same
between previous checkpoint and current model.
"""
def __new__(cls,
ckpt_to_initialize_from,
vars_to_warm_start=".*",
var_name_to_vocab_info=None,
var_name_to_prev_var_name=None):
if not ckpt_to_initialize_from:
raise ValueError(
"`ckpt_to_initialize_from` MUST be set in WarmStartSettings")
return super(WarmStartSettings, cls).__new__(
cls,
ckpt_to_initialize_from,
vars_to_warm_start,
var_name_to_vocab_info or {},
var_name_to_prev_var_name or {},
)
def _is_variable(x):
return (isinstance(x, variables_lib.Variable) or
isinstance(x, resource_variable_ops.ResourceVariable))
def _infer_var_name(var):
"""Returns name of the `var`.
Args:
var: A list. The list can contain either of the following:
(i) A single `Variable`
(ii) A single `ResourceVariable`
(iii) Multiple `Variable` objects which must be slices of the same larger
variable.
(iv) A single `PartitionedVariable`
Returns:
Name of the `var`
"""
name_to_var_dict = saver.BaseSaverBuilder.OpListToDict(var)
if len(name_to_var_dict) > 1:
raise TypeError("`var` = %s passed as arg violates the constraints. "
"name_to_var_dict = %s" % (var, name_to_var_dict))
return list(name_to_var_dict.keys())[0]
def _warm_start_var(var, prev_ckpt, prev_tensor_name=None):
"""Warm-starts given variable from `prev_tensor_name` tensor in `prev_ckpt`.
Args:
var: Current graph's variable that needs to be warm-started (initialized).
Can be either of the following:
(i) `Variable`
(ii) `ResourceVariable`
(iii) list of `Variable`: The list must contain slices of the same larger
variable.
(iv) `PartitionedVariable`
prev_ckpt: A string specifying the directory with checkpoint file(s) or path
to checkpoint. The given checkpoint must have tensor with name
`prev_tensor_name` (if not None) or tensor with name same as given `var`.
prev_tensor_name: Name of the tensor to lookup in provided `prev_ckpt`. If
None, we lookup tensor with same name as given `var`.
"""
if _is_variable(var):
current_var_name = _infer_var_name([var])
elif isinstance(var, list) and all(_is_variable(v) for v in var):
current_var_name = _infer_var_name(var)
elif isinstance(var, variables_lib.PartitionedVariable):
current_var_name = _infer_var_name([var])
var = var._get_variable_list() # pylint: disable=protected-access
else:
raise TypeError(
"var MUST be one of the following: a Variable, list of Variable or "
"PartitionedVariable, but is {}".format(type(var)))
if not prev_tensor_name:
# Assume tensor name remains the same.
prev_tensor_name = current_var_name
checkpoint_utils.init_from_checkpoint(prev_ckpt, {prev_tensor_name: var})
# pylint: disable=protected-access
# Accesses protected members of tf.Variable to reset the variable's internal
# state.
def _warm_start_var_with_vocab(var,
current_vocab_path,
current_vocab_size,
prev_ckpt,
prev_vocab_path,
previous_vocab_size=-1,
current_oov_buckets=0,
prev_tensor_name=None,
initializer=None):
"""Warm-starts given variable from `prev_tensor_name` tensor in `prev_ckpt`.
Use this method when the `var` is backed by vocabulary. This method stitches
the given `var` such that values corresponding to individual features in the
vocabulary remain consistent irrespective of changing order of the features
between old and new vocabularies.
Args:
var: Current graph's variable that needs to be warm-started (initialized).
Can be either of the following:
(i) `Variable`
(ii) `ResourceVariable`
(iii) list of `Variable`: The list must contain slices of the same larger
variable.
(iv) `PartitionedVariable`
current_vocab_path: Path to the vocab file used for the given `var`.
current_vocab_size: An `int` specifying the number of entries in the current
vocab.
prev_ckpt: A string specifying the directory with checkpoint file(s) or path
to checkpoint. The given checkpoint must have tensor with name
`prev_tensor_name` (if not None) or tensor with name same as given `var`.
prev_vocab_path: Path to the vocab file used for the tensor in `prev_ckpt`.
previous_vocab_size: If provided, will constrain previous vocab to the first
`previous_vocab_size` entries. -1 means use the entire previous vocab.
current_oov_buckets: An `int` specifying the number of out-of-vocabulary
buckets used for given `var`.
prev_tensor_name: Name of the tensor to lookup in provided `prev_ckpt`. If
None, we lookup tensor with same name as given `var`.
initializer: Variable initializer to be used for missing entries. If None,
missing entries will be zero-initialized.
Raises:
ValueError: If required args are not provided.
"""
if not (current_vocab_path and current_vocab_size and prev_ckpt and
prev_vocab_path):
raise ValueError("Invalid args: Must provide all of [current_vocab_path, "
"current_vocab_size, prev_ckpt, prev_vocab_path}.")
if _is_variable(var):
var = [var]
elif isinstance(var, list) and all(_is_variable(v) for v in var):
var = var
elif isinstance(var, variables_lib.PartitionedVariable):
var = var._get_variable_list()
else:
raise TypeError(
"var MUST be one of the following: a Variable, list of Variable or "
"PartitionedVariable, but is {}".format(type(var)))
if not prev_tensor_name:
# Assume tensor name remains the same.
prev_tensor_name = _infer_var_name(var)
for v in var:
v_shape = v.get_shape().as_list()
slice_info = v._get_save_slice_info()
partition_info = None
if slice_info:
partition_info = variable_scope._PartitionInfo(
full_shape=slice_info.full_shape,
var_offset=slice_info.var_offset)
# TODO(eddz): Support WarmStartSettings where class vocabularies need
# remapping too.
init = checkpoint_ops._load_and_remap_matrix_initializer(
ckpt_path=checkpoint_utils._get_checkpoint_filename(prev_ckpt),
old_tensor_name=prev_tensor_name,
new_row_vocab_size=current_vocab_size,
new_col_vocab_size=v_shape[1],
old_row_vocab_size=previous_vocab_size,
old_row_vocab_file=prev_vocab_path,
new_row_vocab_file=current_vocab_path,
old_col_vocab_file=None,
new_col_vocab_file=None,
num_row_oov_buckets=current_oov_buckets,
num_col_oov_buckets=0,
initializer=initializer)
new_init_val = ops.convert_to_tensor(
init(shape=v_shape, partition_info=partition_info))
v._initializer_op = state_ops.assign(v, new_init_val)
# pylint: enable=protected-access
def _warm_start(warm_start_settings):
"""Warm-starts a model using the given settings.
If you are using a tf.estimator.Estimator, this will automatically be called
during training.
Args:
warm_start_settings: An object of `WarmStartSettings`.
Raises:
ValueError: If the WarmStartSettings contains prev_var_name or VocabInfo
configuration for variable names that are not used. This is to ensure
a stronger check for variable configuration than relying on users to
examine the logs.
"""
logging.info("Warm-starting from: %s",
(warm_start_settings.ckpt_to_initialize_from,))
# We have to deal with partitioned variables, since get_collection flattens
# out the list.
grouped_variables = {}
# Both warm_start_settings.vars_to_warm_start = '.*' and
# warm_start_settings.vars_to_warm_start = None will match everything here.
for v in ops.get_collection(
ops.GraphKeys.TRAINABLE_VARIABLES,
scope=warm_start_settings.vars_to_warm_start):
if not isinstance(v, list):
var_name = _infer_var_name([v])
else:
var_name = _infer_var_name(v)
grouped_variables.setdefault(var_name, []).append(v)
# Keep track of which var_names in var_name_to_prev_var_name and
# var_name_to_vocab_info have been used. Err on the safer side by throwing an
# exception if any are unused by the end of the loop. It is easy to misname
# a variable during this configuration, in which case without this check, we
# would fail to warm-start silently.
prev_var_name_used = set()
vocab_info_used = set()
for var_name, variable in six.iteritems(grouped_variables):
prev_var_name = warm_start_settings.var_name_to_prev_var_name.get(var_name)
if prev_var_name:
prev_var_name_used.add(var_name)
vocab_info = warm_start_settings.var_name_to_vocab_info.get(var_name)
if vocab_info:
vocab_info_used.add(var_name)
logging.info(
"Warm-starting variable: {}; current_vocab: {} current_vocab_size: {}"
" prev_vocab: {} prev_vocab_size: {} current_oov: {} prev_tensor: {}"
" initializer: {}".format(
var_name,
vocab_info.new_vocab,
vocab_info.new_vocab_size,
vocab_info.old_vocab,
(vocab_info.old_vocab_size if vocab_info.old_vocab_size > 0
else "All"),
vocab_info.num_oov_buckets,
prev_var_name or "Unchanged",
vocab_info.backup_initializer or "zero-initialized"))
_warm_start_var_with_vocab(
variable,
current_vocab_path=vocab_info.new_vocab,
current_vocab_size=vocab_info.new_vocab_size,
prev_ckpt=warm_start_settings.ckpt_to_initialize_from,
prev_vocab_path=vocab_info.old_vocab,
previous_vocab_size=vocab_info.old_vocab_size,
current_oov_buckets=vocab_info.num_oov_buckets,
prev_tensor_name=prev_var_name,
initializer=vocab_info.backup_initializer)
else:
# For the special value of warm_start_settings.vars_to_warm_start = None,
# we only warm-start variables with explicitly specified vocabularies.
if warm_start_settings.vars_to_warm_start:
logging.info("Warm-starting variable: {}; prev_var_name: {}".format(
var_name, prev_var_name or "Unchanged"))
# Because we use a default empty list in grouped_variables, single
# unpartitioned variables will be lists here, which we rectify in order
# for init_from_checkpoint logic to work correctly.
if len(variable) == 1:
variable = variable[0]
_warm_start_var(variable, warm_start_settings.ckpt_to_initialize_from,
prev_var_name)
prev_var_name_not_used = set(
warm_start_settings.var_name_to_prev_var_name.keys()) - prev_var_name_used
vocab_info_not_used = set(
warm_start_settings.var_name_to_vocab_info.keys()) - vocab_info_used
if prev_var_name_not_used:
raise ValueError(
"You provided the following variables in "
"warm_start_settings.var_name_to_prev_var_name that were not used: "
"{0}. Perhaps you misspelled them? Here is the list of viable "
"variable names: {1}".format(prev_var_name_not_used,
grouped_variables.keys()))
if vocab_info_not_used:
raise ValueError(
"You provided the following variables in "
"warm_start_settings.var_name_to_vocab_info that were not used: {0}. "
" Perhaps you misspelled them? Here is the list of viable variable "
"names: {1}".format(vocab_info_not_used, grouped_variables.keys()))
def _get_default_warm_start_settings(warm_start_from):
"""Returns default WarmStartSettings.
Args:
warm_start_from: Either a string representing the filepath of a checkpoint
to initialize from, or an instance of WarmStartSettings.
Returns:
Either None or an instance of WarmStartSettings.
Raises:
ValueError: If warm_start_from is not None but is neither a string nor an
instance of WarmStartSettings.
"""
if warm_start_from is None:
return None
if isinstance(warm_start_from, six.string_types):
return WarmStartSettings(ckpt_to_initialize_from=warm_start_from)
elif isinstance(warm_start_from, WarmStartSettings):
return warm_start_from
else:
raise ValueError("warm_start_from must be a string or a WarmStartSettings")
以上内容是否对您有帮助:
更多建议: