1.4. Support Vector Machines

1.4. Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.

The advantages of support vector machines are:

  • Effective in high dimensional spaces.
  • Still effective in cases where number of dimensions is greater than the number of samples.
  • Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.
  • Versatile: different Kernel functions can be spec