sklearn.datasets.make_multilabel_classification()
sklearn.datasets.make_multilabel_classification
-
sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None)
[source] -
Generate a random multilabel classification problem.
- For each sample, the generative process is:
-
- pick the number of labels: n ~ Poisson(n_labels)
- n times, choose a class c: c ~ Multinomial(theta)
- pick the document length: k ~ Poisson(length